MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ineqcom Structured version   Visualization version   GIF version

Theorem ineqcom 4231
Description: Two ways of expressing that two classes have a given intersection. This is often used when that given intersection is the empty set, in which case the statement displays two ways of expressing that two classes are disjoint (when 𝐶 = ∅: ((𝐴𝐵) = ∅ ↔ (𝐵𝐴) = ∅)). (Contributed by Peter Mazsa, 22-Mar-2017.)
Assertion
Ref Expression
ineqcom ((𝐴𝐵) = 𝐶 ↔ (𝐵𝐴) = 𝐶)

Proof of Theorem ineqcom
StepHypRef Expression
1 incom 4230 . 2 (𝐴𝐵) = (𝐵𝐴)
21eqeq1i 2745 1 ((𝐴𝐵) = 𝐶 ↔ (𝐵𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1537  cin 3975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-rab 3444  df-in 3983
This theorem is referenced by:  fnunres2  6694
  Copyright terms: Public domain W3C validator