| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ineqcom | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing that two classes have a given intersection. This is often used when that given intersection is the empty set, in which case the statement displays two ways of expressing that two classes are disjoint (when 𝐶 = ∅: ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐵 ∩ 𝐴) = ∅)). (Contributed by Peter Mazsa, 22-Mar-2017.) |
| Ref | Expression |
|---|---|
| ineqcom | ⊢ ((𝐴 ∩ 𝐵) = 𝐶 ↔ (𝐵 ∩ 𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | incom 4189 | . 2 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
| 2 | 1 | eqeq1i 2739 | 1 ⊢ ((𝐴 ∩ 𝐵) = 𝐶 ↔ (𝐵 ∩ 𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1539 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-rab 3420 df-in 3938 |
| This theorem is referenced by: fnunres2 6661 |
| Copyright terms: Public domain | W3C validator |