MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ineqcom Structured version   Visualization version   GIF version

Theorem ineqcom 4133
Description: Two ways of expressing that two classes have a given intersection. This is often used when that given intersection is the empty set, in which case the statement displays two ways of expressing that two classes are disjoint (when 𝐶 = ∅: ((𝐴𝐵) = ∅ ↔ (𝐵𝐴) = ∅)). (Contributed by Peter Mazsa, 22-Mar-2017.)
Assertion
Ref Expression
ineqcom ((𝐴𝐵) = 𝐶 ↔ (𝐵𝐴) = 𝐶)

Proof of Theorem ineqcom
StepHypRef Expression
1 incom 4131 . 2 (𝐴𝐵) = (𝐵𝐴)
21eqeq1i 2743 1 ((𝐴𝐵) = 𝐶 ↔ (𝐵𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  cin 3882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-rab 3072  df-in 3890
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator