| Metamath
Proof Explorer Theorem List (p. 43 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | rabbi2dva 4201* | Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝜓}) | ||
| Theorem | inidm 4202 | Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
| ⊢ (𝐴 ∩ 𝐴) = 𝐴 | ||
| Theorem | inass 4203 | Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) |
| ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) | ||
| Theorem | in12 4204 | A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) |
| ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐵 ∩ (𝐴 ∩ 𝐶)) | ||
| Theorem | in32 4205 | A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ 𝐵) | ||
| Theorem | in13 4206 | A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.) |
| ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐶 ∩ (𝐵 ∩ 𝐴)) | ||
| Theorem | in31 4207 | A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.) |
| ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐶 ∩ 𝐵) ∩ 𝐴) | ||
| Theorem | inrot 4208 | Rotate the intersection of 3 classes. (Contributed by NM, 27-Aug-2012.) |
| ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐶 ∩ 𝐴) ∩ 𝐵) | ||
| Theorem | in4 4209 | Rearrangement of intersection of 4 classes. (Contributed by NM, 21-Apr-2001.) |
| ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐷)) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐷)) | ||
| Theorem | inindi 4210 | Intersection distributes over itself. (Contributed by NM, 6-May-1994.) |
| ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) | ||
| Theorem | inindir 4211 | Intersection distributes over itself. (Contributed by NM, 17-Aug-2004.) |
| ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) | ||
| Theorem | inss1 4212 | The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
| ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | ||
| Theorem | inss2 4213 | The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
| ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | ||
| Theorem | ssin 4214 | Subclass of intersection. Theorem 2.8(vii) of [Monk1] p. 26. (Contributed by NM, 15-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | ||
| Theorem | ssini 4215 | An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐴 ⊆ 𝐶 ⇒ ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) | ||
| Theorem | ssind 4216 | A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) | ||
| Theorem | ssrin 4217 | Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | ||
| Theorem | sslin 4218 | Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) | ||
| Theorem | ssrind 4219 | Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | ||
| Theorem | ss2in 4220 | Intersection of subclasses. (Contributed by NM, 5-May-2000.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) | ||
| Theorem | ssinss1 4221 | Intersection preserves subclass relationship. (Contributed by NM, 14-Sep-1999.) |
| ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) | ||
| Theorem | ssinss1d 4222 | Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐶) | ||
| Theorem | inss 4223 | Inclusion of an intersection of two classes. (Contributed by NM, 30-Oct-2014.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∨ 𝐵 ⊆ 𝐶) → (𝐴 ∩ 𝐵) ⊆ 𝐶) | ||
| Theorem | ralin 4224 | Restricted universal quantification over intersection. (Contributed by Peter Mazsa, 8-Sep-2023.) |
| ⊢ (∀𝑥 ∈ (𝐴 ∩ 𝐵)𝜑 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑)) | ||
| Theorem | rexin 4225 | Restricted existential quantification over intersection. (Contributed by Peter Mazsa, 17-Dec-2018.) |
| ⊢ (∃𝑥 ∈ (𝐴 ∩ 𝐵)𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝜑)) | ||
| Theorem | dfss7 4226* | Alternate definition of subclass relationship. (Contributed by AV, 1-Aug-2022.) |
| ⊢ (𝐵 ⊆ 𝐴 ↔ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = 𝐵) | ||
| Syntax | csymdif 4227 | Declare the syntax for symmetric difference. |
| class (𝐴 △ 𝐵) | ||
| Definition | df-symdif 4228 | Define the symmetric difference of two classes. Alternate definitions are dfsymdif2 4236, dfsymdif3 4281 and dfsymdif4 4234. (Contributed by Scott Fenton, 31-Mar-2012.) |
| ⊢ (𝐴 △ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) | ||
| Theorem | symdifcom 4229 | Symmetric difference commutes. (Contributed by Scott Fenton, 24-Apr-2012.) |
| ⊢ (𝐴 △ 𝐵) = (𝐵 △ 𝐴) | ||
| Theorem | symdifeq1 4230 | Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.) |
| ⊢ (𝐴 = 𝐵 → (𝐴 △ 𝐶) = (𝐵 △ 𝐶)) | ||
| Theorem | symdifeq2 4231 | Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 △ 𝐴) = (𝐶 △ 𝐵)) | ||
| Theorem | nfsymdif 4232 | Hypothesis builder for symmetric difference. (Contributed by Scott Fenton, 19-Feb-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 △ 𝐵) | ||
| Theorem | elsymdif 4233 | Membership in a symmetric difference. (Contributed by Scott Fenton, 31-Mar-2012.) |
| ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ ¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) | ||
| Theorem | dfsymdif4 4234* | Alternate definition of the symmetric difference. (Contributed by NM, 17-Aug-2004.) (Revised by AV, 17-Aug-2022.) |
| ⊢ (𝐴 △ 𝐵) = {𝑥 ∣ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)} | ||
| Theorem | elsymdifxor 4235 | Membership in a symmetric difference is an exclusive-or relationship. (Contributed by David A. Wheeler, 26-Apr-2020.) (Proof shortened by BJ, 13-Aug-2022.) |
| ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ (𝐴 ∈ 𝐵 ⊻ 𝐴 ∈ 𝐶)) | ||
| Theorem | dfsymdif2 4236* | Alternate definition of the symmetric difference. (Contributed by BJ, 30-Apr-2020.) |
| ⊢ (𝐴 △ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)} | ||
| Theorem | symdifass 4237 | Symmetric difference is associative. (Contributed by Scott Fenton, 24-Apr-2012.) (Proof shortened by BJ, 7-Sep-2022.) |
| ⊢ ((𝐴 △ 𝐵) △ 𝐶) = (𝐴 △ (𝐵 △ 𝐶)) | ||
| Theorem | difsssymdif 4238 | The symmetric difference contains one of the differences. (Proposed by BJ, 18-Aug-2022.) (Contributed by AV, 19-Aug-2022.) |
| ⊢ (𝐴 ∖ 𝐵) ⊆ (𝐴 △ 𝐵) | ||
| Theorem | difsymssdifssd 4239 | If the symmetric difference is contained in 𝐶, so is one of the differences. (Contributed by AV, 17-Aug-2022.) |
| ⊢ (𝜑 → (𝐴 △ 𝐵) ⊆ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐶) | ||
| Theorem | unabs 4240 | Absorption law for union. (Contributed by NM, 16-Apr-2006.) |
| ⊢ (𝐴 ∪ (𝐴 ∩ 𝐵)) = 𝐴 | ||
| Theorem | inabs 4241 | Absorption law for intersection. (Contributed by NM, 16-Apr-2006.) |
| ⊢ (𝐴 ∩ (𝐴 ∪ 𝐵)) = 𝐴 | ||
| Theorem | nssinpss 4242 | Negation of subclass expressed in terms of intersection and proper subclass. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) ⊊ 𝐴) | ||
| Theorem | nsspssun 4243 | Negation of subclass expressed in terms of proper subclass and union. (Contributed by NM, 15-Sep-2004.) |
| ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ 𝐵 ⊊ (𝐴 ∪ 𝐵)) | ||
| Theorem | dfss4 4244 | Subclass defined in terms of class difference. See comments under dfun2 4245. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴) | ||
| Theorem | dfun2 4245 | An alternate definition of the union of two classes in terms of class difference, requiring no dummy variables. Along with dfin2 4246 and dfss4 4244 it shows we can express union, intersection, and subset directly in terms of the single "primitive" operation ∖ (class difference). (Contributed by NM, 10-Jun-2004.) |
| ⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) | ||
| Theorem | dfin2 4246 | An alternate definition of the intersection of two classes in terms of class difference, requiring no dummy variables. See comments under dfun2 4245. Another version is given by dfin4 4253. (Contributed by NM, 10-Jun-2004.) |
| ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (V ∖ 𝐵)) | ||
| Theorem | difin 4247 | Difference with intersection. Theorem 33 of [Suppes] p. 29. (Contributed by NM, 31-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | ||
| Theorem | ssdifim 4248 | Implication of a class difference with a subclass. (Contributed by AV, 3-Jan-2022.) |
| ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 = (𝑉 ∖ 𝐴)) → 𝐴 = (𝑉 ∖ 𝐵)) | ||
| Theorem | ssdifsym 4249 | Symmetric class differences for subclasses. (Contributed by AV, 3-Jan-2022.) |
| ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 ⊆ 𝑉) → (𝐵 = (𝑉 ∖ 𝐴) ↔ 𝐴 = (𝑉 ∖ 𝐵))) | ||
| Theorem | dfss5 4250* | Alternate definition of subclass relationship: a class 𝐴 is a subclass of another class 𝐵 iff each element of 𝐴 is equal to an element of 𝐵. (Contributed by AV, 13-Nov-2020.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝑦) | ||
| Theorem | dfun3 4251 | Union defined in terms of intersection (De Morgan's law). Definition of union in [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
| ⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) | ||
| Theorem | dfin3 4252 | Intersection defined in terms of union (De Morgan's law). Similar to Exercise 4.10(n) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
| ⊢ (𝐴 ∩ 𝐵) = (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) | ||
| Theorem | dfin4 4253 | Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.) |
| ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) | ||
| Theorem | invdif 4254 | Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.) |
| ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | ||
| Theorem | indif 4255 | Intersection with class difference. Theorem 34 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
| ⊢ (𝐴 ∩ (𝐴 ∖ 𝐵)) = (𝐴 ∖ 𝐵) | ||
| Theorem | indif2 4256 | Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.) |
| ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) | ||
| Theorem | indif1 4257 | Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((𝐴 ∖ 𝐶) ∩ 𝐵) = ((𝐴 ∩ 𝐵) ∖ 𝐶) | ||
| Theorem | indifcom 4258 | Commutation law for intersection and difference. (Contributed by Scott Fenton, 18-Feb-2013.) |
| ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = (𝐵 ∩ (𝐴 ∖ 𝐶)) | ||
| Theorem | indi 4259 | Distributive law for intersection over union. Exercise 10 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) | ||
| Theorem | undi 4260 | Distributive law for union over intersection. Exercise 11 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝐴 ∪ (𝐵 ∩ 𝐶)) = ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)) | ||
| Theorem | indir 4261 | Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
| ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) | ||
| Theorem | undir 4262 | Distributive law for union over intersection. Theorem 29 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
| ⊢ ((𝐴 ∩ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)) | ||
| Theorem | unineq 4263 | Infer equality from equalities of union and intersection. Exercise 20 of [Enderton] p. 32 and its converse. (Contributed by NM, 10-Aug-2004.) |
| ⊢ (((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) ↔ 𝐴 = 𝐵) | ||
| Theorem | uneqin 4264 | Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∪ 𝐵) = (𝐴 ∩ 𝐵) ↔ 𝐴 = 𝐵) | ||
| Theorem | difundi 4265 | Distributive law for class difference. Theorem 39 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
| ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∩ (𝐴 ∖ 𝐶)) | ||
| Theorem | difundir 4266 | Distributive law for class difference. (Contributed by NM, 17-Aug-2004.) |
| ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) | ||
| Theorem | difindi 4267 | Distributive law for class difference. Theorem 40 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
| ⊢ (𝐴 ∖ (𝐵 ∩ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) | ||
| Theorem | difindir 4268 | Distributive law for class difference. (Contributed by NM, 17-Aug-2004.) |
| ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∩ (𝐵 ∖ 𝐶)) | ||
| Theorem | indifdi 4269 | Distribute intersection over difference. (Contributed by BTernaryTau, 14-Aug-2024.) |
| ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ (𝐴 ∩ 𝐶)) | ||
| Theorem | indifdir 4270 | Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.) (Revised by BTernaryTau, 14-Aug-2024.) |
| ⊢ ((𝐴 ∖ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∖ (𝐵 ∩ 𝐶)) | ||
| Theorem | difdif2 4271 | Class difference by a class difference. (Contributed by Thierry Arnoux, 18-Dec-2017.) |
| ⊢ (𝐴 ∖ (𝐵 ∖ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) | ||
| Theorem | undm 4272 | De Morgan's law for union. Theorem 5.2(13) of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.) |
| ⊢ (V ∖ (𝐴 ∪ 𝐵)) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵)) | ||
| Theorem | indm 4273 | De Morgan's law for intersection. Theorem 5.2(13') of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.) |
| ⊢ (V ∖ (𝐴 ∩ 𝐵)) = ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) | ||
| Theorem | difun1 4274 | A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.) |
| ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∖ 𝐶) | ||
| Theorem | undif3 4275 | An equality involving class union and class difference. The first equality of Exercise 13 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 17-Apr-2012.) (Proof shortened by JJ, 13-Jul-2021.) |
| ⊢ (𝐴 ∪ (𝐵 ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)) | ||
| Theorem | difin2 4276 | Represent a class difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = ((𝐶 ∖ 𝐵) ∩ 𝐴)) | ||
| Theorem | dif32 4277 | Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004.) |
| ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∖ 𝐵) | ||
| Theorem | difabs 4278 | Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009.) |
| ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) | ||
| Theorem | sscon34b 4279 | Relative complementation reverses inclusion of subclasses. Relativized version of complss 4126. (Contributed by RP, 3-Jun-2021.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴))) | ||
| Theorem | rcompleq 4280 | Two subclasses are equal if and only if their relative complements are equal. Relativized version of compleq 4127. (Contributed by RP, 10-Jun-2021.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 = 𝐵 ↔ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵))) | ||
| Theorem | dfsymdif3 4281 | Alternate definition of the symmetric difference, given in Example 4.1 of [Stoll] p. 262 (the original definition corresponds to [Stoll] p. 13). (Contributed by NM, 17-Aug-2004.) (Revised by BJ, 30-Apr-2020.) |
| ⊢ (𝐴 △ 𝐵) = ((𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵)) | ||
| Theorem | unabw 4282* | Union of two class abstractions. Version of unab 4283 using implicit substitution, which does not require ax-8 2110, ax-10 2141, ax-12 2177. (Contributed by GG, 15-Oct-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) ⇒ ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑦 ∣ (𝜒 ∨ 𝜃)} | ||
| Theorem | unab 4283 | Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∨ 𝜓)} | ||
| Theorem | inab 4284 | Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ({𝑥 ∣ 𝜑} ∩ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ 𝜓)} | ||
| Theorem | difab 4285 | Difference of two class abstractions. (Contributed by NM, 23-Oct-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ({𝑥 ∣ 𝜑} ∖ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)} | ||
| Theorem | abanssl 4286 | A class abstraction with a conjunction is a subset of the class abstraction with the left conjunct only. (Contributed by AV, 7-Aug-2024.) (Proof shortened by SN, 22-Aug-2024.) |
| ⊢ {𝑓 ∣ (𝜑 ∧ 𝜓)} ⊆ {𝑓 ∣ 𝜑} | ||
| Theorem | abanssr 4287 | A class abstraction with a conjunction is a subset of the class abstraction with the right conjunct only. (Contributed by AV, 7-Aug-2024.) (Proof shortened by SN, 22-Aug-2024.) |
| ⊢ {𝑓 ∣ (𝜑 ∧ 𝜓)} ⊆ {𝑓 ∣ 𝜓} | ||
| Theorem | notabw 4288* | A class abstraction defined by a negation. Version of notab 4289 using implicit substitution, which does not require ax-10 2141, ax-12 2177. (Contributed by GG, 15-Oct-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑦 ∣ 𝜓}) | ||
| Theorem | notab 4289 | A class abstraction defined by a negation. (Contributed by FL, 18-Sep-2010.) |
| ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥 ∣ 𝜑}) | ||
| Theorem | unrab 4290 | Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004.) |
| ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} | ||
| Theorem | inrab 4291 | Intersection of two restricted class abstractions. (Contributed by NM, 1-Sep-2006.) |
| ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} | ||
| Theorem | inrab2 4292* | Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.) |
| ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} | ||
| Theorem | difrab 4293 | Difference of two restricted class abstractions. (Contributed by NM, 23-Oct-2004.) |
| ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜓)} | ||
| Theorem | dfrab3 4294* | Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.) |
| ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | ||
| Theorem | dfrab2 4295* | Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.) (Proof shortened by BJ, 22-Apr-2019.) |
| ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐴) | ||
| Theorem | rabdif 4296* | Move difference in and out of a restricted class abstraction. (Contributed by Steven Nguyen, 6-Jun-2023.) |
| ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ 𝐵) = {𝑥 ∈ (𝐴 ∖ 𝐵) ∣ 𝜑} | ||
| Theorem | notrab 4297* | Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝜑}) = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} | ||
| Theorem | dfrab3ss 4298* | Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 8-Nov-2015.) |
| ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑})) | ||
| Theorem | rabun2 4299 | Abstraction restricted to a union. (Contributed by Stefan O'Rear, 5-Feb-2015.) |
| ⊢ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜑} = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ 𝜑}) | ||
| Theorem | reuun2 4300 | Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005.) (Proof shortened by Wolf Lammen, 15-May-2025.) |
| ⊢ (¬ ∃𝑥 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜑)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |