![]() |
Metamath
Proof Explorer Theorem List (p. 43 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ssun1 4201 | Subclass relationship for union of classes. Theorem 25 of [Suppes] p. 27. (Contributed by NM, 5-Aug-1993.) |
⊢ 𝐴 ⊆ (𝐴 ∪ 𝐵) | ||
Theorem | ssun2 4202 | Subclass relationship for union of classes. (Contributed by NM, 30-Aug-1993.) |
⊢ 𝐴 ⊆ (𝐵 ∪ 𝐴) | ||
Theorem | ssun3 4203 | Subclass law for union of classes. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐵 ∪ 𝐶)) | ||
Theorem | ssun4 4204 | Subclass law for union of classes. (Contributed by NM, 14-Aug-1994.) |
⊢ (𝐴 ⊆ 𝐵 → 𝐴 ⊆ (𝐶 ∪ 𝐵)) | ||
Theorem | elun1 4205 | Membership law for union of classes. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐵 ∪ 𝐶)) | ||
Theorem | elun2 4206 | Membership law for union of classes. (Contributed by NM, 30-Aug-1993.) |
⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ (𝐶 ∪ 𝐵)) | ||
Theorem | elunant 4207 | A statement is true for every element of the union of a pair of classes if and only if it is true for every element of the first class and for every element of the second class. (Contributed by BTernaryTau, 27-Sep-2023.) |
⊢ ((𝐶 ∈ (𝐴 ∪ 𝐵) → 𝜑) ↔ ((𝐶 ∈ 𝐴 → 𝜑) ∧ (𝐶 ∈ 𝐵 → 𝜑))) | ||
Theorem | unss1 4208 | Subclass law for union of classes. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐶)) | ||
Theorem | ssequn1 4209 | A relationship between subclass and union. Theorem 26 of [Suppes] p. 27. (Contributed by NM, 30-Aug-1993.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∪ 𝐵) = 𝐵) | ||
Theorem | unss2 4210 | Subclass law for union of classes. Exercise 7 of [TakeutiZaring] p. 18. (Contributed by NM, 14-Oct-1999.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∪ 𝐴) ⊆ (𝐶 ∪ 𝐵)) | ||
Theorem | unss12 4211 | Subclass law for union of classes. (Contributed by NM, 2-Jun-2004.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∪ 𝐶) ⊆ (𝐵 ∪ 𝐷)) | ||
Theorem | ssequn2 4212 | A relationship between subclass and union. (Contributed by NM, 13-Jun-1994.) |
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∪ 𝐴) = 𝐵) | ||
Theorem | unss 4213 | The union of two subclasses is a subclass. Theorem 27 of [Suppes] p. 27 and its converse. (Contributed by NM, 11-Jun-2004.) |
⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) ↔ (𝐴 ∪ 𝐵) ⊆ 𝐶) | ||
Theorem | unssi 4214 | An inference showing the union of two subclasses is a subclass. (Contributed by Raph Levien, 10-Dec-2002.) |
⊢ 𝐴 ⊆ 𝐶 & ⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ (𝐴 ∪ 𝐵) ⊆ 𝐶 | ||
Theorem | unssd 4215 | A deduction showing the union of two subclasses is a subclass. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐶) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) | ||
Theorem | unssad 4216 | If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐴. One-way deduction form of unss 4213. Partial converse of unssd 4215. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐶) | ||
Theorem | unssbd 4217 | If (𝐴 ∪ 𝐵) is contained in 𝐶, so is 𝐵. One-way deduction form of unss 4213. Partial converse of unssd 4215. (Contributed by David Moews, 1-May-2017.) |
⊢ (𝜑 → (𝐴 ∪ 𝐵) ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐵 ⊆ 𝐶) | ||
Theorem | ssun 4218 | A condition that implies inclusion in the union of two classes. (Contributed by NM, 23-Nov-2003.) |
⊢ ((𝐴 ⊆ 𝐵 ∨ 𝐴 ⊆ 𝐶) → 𝐴 ⊆ (𝐵 ∪ 𝐶)) | ||
Theorem | rexun 4219 | Restricted existential quantification over union. (Contributed by Jeff Madsen, 5-Jan-2011.) |
⊢ (∃𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∨ ∃𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | ralunb 4220 | Restricted quantification over a union. (Contributed by Scott Fenton, 12-Apr-2011.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
⊢ (∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑)) | ||
Theorem | ralun 4221 | Restricted quantification over union. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐵 𝜑) → ∀𝑥 ∈ (𝐴 ∪ 𝐵)𝜑) | ||
Theorem | elini 4222 | Membership in an intersection of two classes. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ 𝐴 ∈ 𝐵 & ⊢ 𝐴 ∈ 𝐶 ⇒ ⊢ 𝐴 ∈ (𝐵 ∩ 𝐶) | ||
Theorem | elind 4223 | Deduce membership in an intersection of two classes. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) | ||
Theorem | elinel1 4224 | Membership in an intersection implies membership in the first set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ 𝐵) | ||
Theorem | elinel2 4225 | Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ 𝐶) | ||
Theorem | elin2 4226 | Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝑋 = (𝐵 ∩ 𝐶) ⇒ ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | ||
Theorem | elin1d 4227 | Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.) |
⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐴) | ||
Theorem | elin2d 4228 | Elementhood in the first set of an intersection - deduction version. (Contributed by Thierry Arnoux, 3-May-2020.) |
⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝐵) | ||
Theorem | elin3 4229 | Membership in a class defined as a ternary intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
⊢ 𝑋 = ((𝐵 ∩ 𝐶) ∩ 𝐷) ⇒ ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶 ∧ 𝐴 ∈ 𝐷)) | ||
Theorem | incom 4230 | Commutative law for intersection of classes. Exercise 7 of [TakeutiZaring] p. 17. (Contributed by NM, 21-Jun-1993.) (Proof shortened by SN, 12-Dec-2023.) |
⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | ||
Theorem | ineqcom 4231 | Two ways of expressing that two classes have a given intersection. This is often used when that given intersection is the empty set, in which case the statement displays two ways of expressing that two classes are disjoint (when 𝐶 = ∅: ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐵 ∩ 𝐴) = ∅)). (Contributed by Peter Mazsa, 22-Mar-2017.) |
⊢ ((𝐴 ∩ 𝐵) = 𝐶 ↔ (𝐵 ∩ 𝐴) = 𝐶) | ||
Theorem | ineqcomi 4232 | Two ways of expressing that two classes have a given intersection. Inference form of ineqcom 4231. Disjointness inference when 𝐶 = ∅. (Contributed by Peter Mazsa, 26-Mar-2017.) (Proof shortened by SN, 20-Sep-2024.) |
⊢ (𝐴 ∩ 𝐵) = 𝐶 ⇒ ⊢ (𝐵 ∩ 𝐴) = 𝐶 | ||
Theorem | ineqri 4233* | Inference from membership to intersection. (Contributed by NM, 21-Jun-1993.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) ↔ 𝑥 ∈ 𝐶) ⇒ ⊢ (𝐴 ∩ 𝐵) = 𝐶 | ||
Theorem | ineq1 4234 | Equality theorem for intersection of two classes. (Contributed by NM, 14-Dec-1993.) (Proof shortened by SN, 20-Sep-2023.) |
⊢ (𝐴 = 𝐵 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | ||
Theorem | ineq2 4235 | Equality theorem for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
⊢ (𝐴 = 𝐵 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | ||
Theorem | ineq12 4236 | Equality theorem for intersection of two classes. (Contributed by NM, 8-May-1994.) |
⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | ||
Theorem | ineq1i 4237 | Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶) | ||
Theorem | ineq2i 4238 | Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) | ||
Theorem | ineq12i 4239 | Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) | ||
Theorem | ineq1d 4240 | Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | ||
Theorem | ineq2d 4241 | Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | ||
Theorem | ineq12d 4242 | Equality deduction for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | ||
Theorem | ineqan12d 4243 | Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | ||
Theorem | sseqin2 4244 | A relationship between subclass and intersection. Similar to Exercise 9 of [TakeutiZaring] p. 18. (Contributed by NM, 17-May-1994.) |
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) | ||
Theorem | nfin 4245 | Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) Avoid ax-10 2141, ax-11 2158, ax-12 2178. (Revised by SN, 14-May-2025.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) | ||
Theorem | nfinOLD 4246 | Obsolete version of nfin 4245 as of 14-May-2025. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) | ||
Theorem | rabbi2dva 4247* | Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝜓}) | ||
Theorem | inidm 4248 | Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝐴 ∩ 𝐴) = 𝐴 | ||
Theorem | inass 4249 | Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) |
⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) | ||
Theorem | in12 4250 | A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) |
⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐵 ∩ (𝐴 ∩ 𝐶)) | ||
Theorem | in32 4251 | A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ 𝐵) | ||
Theorem | in13 4252 | A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.) |
⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐶 ∩ (𝐵 ∩ 𝐴)) | ||
Theorem | in31 4253 | A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.) |
⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐶 ∩ 𝐵) ∩ 𝐴) | ||
Theorem | inrot 4254 | Rotate the intersection of 3 classes. (Contributed by NM, 27-Aug-2012.) |
⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐶 ∩ 𝐴) ∩ 𝐵) | ||
Theorem | in4 4255 | Rearrangement of intersection of 4 classes. (Contributed by NM, 21-Apr-2001.) |
⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐷)) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐷)) | ||
Theorem | inindi 4256 | Intersection distributes over itself. (Contributed by NM, 6-May-1994.) |
⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) | ||
Theorem | inindir 4257 | Intersection distributes over itself. (Contributed by NM, 17-Aug-2004.) |
⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) | ||
Theorem | inss1 4258 | The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | ||
Theorem | inss2 4259 | The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | ||
Theorem | ssin 4260 | Subclass of intersection. Theorem 2.8(vii) of [Monk1] p. 26. (Contributed by NM, 15-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | ||
Theorem | ssini 4261 | An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐴 ⊆ 𝐶 ⇒ ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) | ||
Theorem | ssind 4262 | A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) | ||
Theorem | ssrin 4263 | Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | ||
Theorem | sslin 4264 | Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) | ||
Theorem | ssrind 4265 | Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | ||
Theorem | ss2in 4266 | Intersection of subclasses. (Contributed by NM, 5-May-2000.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) | ||
Theorem | ssinss1 4267 | Intersection preserves subclass relationship. (Contributed by NM, 14-Sep-1999.) |
⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) | ||
Theorem | inss 4268 | Inclusion of an intersection of two classes. (Contributed by NM, 30-Oct-2014.) |
⊢ ((𝐴 ⊆ 𝐶 ∨ 𝐵 ⊆ 𝐶) → (𝐴 ∩ 𝐵) ⊆ 𝐶) | ||
Theorem | rexin 4269 | Restricted existential quantification over intersection. (Contributed by Peter Mazsa, 17-Dec-2018.) |
⊢ (∃𝑥 ∈ (𝐴 ∩ 𝐵)𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝜑)) | ||
Theorem | dfss7 4270* | Alternate definition of subclass relationship. (Contributed by AV, 1-Aug-2022.) |
⊢ (𝐵 ⊆ 𝐴 ↔ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = 𝐵) | ||
Syntax | csymdif 4271 | Declare the syntax for symmetric difference. |
class (𝐴 △ 𝐵) | ||
Definition | df-symdif 4272 | Define the symmetric difference of two classes. Alternate definitions are dfsymdif2 4280, dfsymdif3 4325 and dfsymdif4 4278. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ (𝐴 △ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) | ||
Theorem | symdifcom 4273 | Symmetric difference commutes. (Contributed by Scott Fenton, 24-Apr-2012.) |
⊢ (𝐴 △ 𝐵) = (𝐵 △ 𝐴) | ||
Theorem | symdifeq1 4274 | Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.) |
⊢ (𝐴 = 𝐵 → (𝐴 △ 𝐶) = (𝐵 △ 𝐶)) | ||
Theorem | symdifeq2 4275 | Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.) |
⊢ (𝐴 = 𝐵 → (𝐶 △ 𝐴) = (𝐶 △ 𝐵)) | ||
Theorem | nfsymdif 4276 | Hypothesis builder for symmetric difference. (Contributed by Scott Fenton, 19-Feb-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 △ 𝐵) | ||
Theorem | elsymdif 4277 | Membership in a symmetric difference. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ ¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) | ||
Theorem | dfsymdif4 4278* | Alternate definition of the symmetric difference. (Contributed by NM, 17-Aug-2004.) (Revised by AV, 17-Aug-2022.) |
⊢ (𝐴 △ 𝐵) = {𝑥 ∣ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)} | ||
Theorem | elsymdifxor 4279 | Membership in a symmetric difference is an exclusive-or relationship. (Contributed by David A. Wheeler, 26-Apr-2020.) (Proof shortened by BJ, 13-Aug-2022.) |
⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ (𝐴 ∈ 𝐵 ⊻ 𝐴 ∈ 𝐶)) | ||
Theorem | dfsymdif2 4280* | Alternate definition of the symmetric difference. (Contributed by BJ, 30-Apr-2020.) |
⊢ (𝐴 △ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)} | ||
Theorem | symdifass 4281 | Symmetric difference is associative. (Contributed by Scott Fenton, 24-Apr-2012.) (Proof shortened by BJ, 7-Sep-2022.) |
⊢ ((𝐴 △ 𝐵) △ 𝐶) = (𝐴 △ (𝐵 △ 𝐶)) | ||
Theorem | difsssymdif 4282 | The symmetric difference contains one of the differences. (Proposed by BJ, 18-Aug-2022.) (Contributed by AV, 19-Aug-2022.) |
⊢ (𝐴 ∖ 𝐵) ⊆ (𝐴 △ 𝐵) | ||
Theorem | difsymssdifssd 4283 | If the symmetric difference is contained in 𝐶, so is one of the differences. (Contributed by AV, 17-Aug-2022.) |
⊢ (𝜑 → (𝐴 △ 𝐵) ⊆ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐶) | ||
Theorem | unabs 4284 | Absorption law for union. (Contributed by NM, 16-Apr-2006.) |
⊢ (𝐴 ∪ (𝐴 ∩ 𝐵)) = 𝐴 | ||
Theorem | inabs 4285 | Absorption law for intersection. (Contributed by NM, 16-Apr-2006.) |
⊢ (𝐴 ∩ (𝐴 ∪ 𝐵)) = 𝐴 | ||
Theorem | nssinpss 4286 | Negation of subclass expressed in terms of intersection and proper subclass. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) ⊊ 𝐴) | ||
Theorem | nsspssun 4287 | Negation of subclass expressed in terms of proper subclass and union. (Contributed by NM, 15-Sep-2004.) |
⊢ (¬ 𝐴 ⊆ 𝐵 ↔ 𝐵 ⊊ (𝐴 ∪ 𝐵)) | ||
Theorem | dfss4 4288 | Subclass defined in terms of class difference. See comments under dfun2 4289. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴) | ||
Theorem | dfun2 4289 | An alternate definition of the union of two classes in terms of class difference, requiring no dummy variables. Along with dfin2 4290 and dfss4 4288 it shows we can express union, intersection, and subset directly in terms of the single "primitive" operation ∖ (class difference). (Contributed by NM, 10-Jun-2004.) |
⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) | ||
Theorem | dfin2 4290 | An alternate definition of the intersection of two classes in terms of class difference, requiring no dummy variables. See comments under dfun2 4289. Another version is given by dfin4 4297. (Contributed by NM, 10-Jun-2004.) |
⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (V ∖ 𝐵)) | ||
Theorem | difin 4291 | Difference with intersection. Theorem 33 of [Suppes] p. 29. (Contributed by NM, 31-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | ||
Theorem | ssdifim 4292 | Implication of a class difference with a subclass. (Contributed by AV, 3-Jan-2022.) |
⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 = (𝑉 ∖ 𝐴)) → 𝐴 = (𝑉 ∖ 𝐵)) | ||
Theorem | ssdifsym 4293 | Symmetric class differences for subclasses. (Contributed by AV, 3-Jan-2022.) |
⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 ⊆ 𝑉) → (𝐵 = (𝑉 ∖ 𝐴) ↔ 𝐴 = (𝑉 ∖ 𝐵))) | ||
Theorem | dfss5 4294* | Alternate definition of subclass relationship: a class 𝐴 is a subclass of another class 𝐵 iff each element of 𝐴 is equal to an element of 𝐵. (Contributed by AV, 13-Nov-2020.) |
⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝑦) | ||
Theorem | dfun3 4295 | Union defined in terms of intersection (De Morgan's law). Definition of union in [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) | ||
Theorem | dfin3 4296 | Intersection defined in terms of union (De Morgan's law). Similar to Exercise 4.10(n) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
⊢ (𝐴 ∩ 𝐵) = (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) | ||
Theorem | dfin4 4297 | Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.) |
⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) | ||
Theorem | invdif 4298 | Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.) |
⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | ||
Theorem | indif 4299 | Intersection with class difference. Theorem 34 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
⊢ (𝐴 ∩ (𝐴 ∖ 𝐵)) = (𝐴 ∖ 𝐵) | ||
Theorem | indif2 4300 | Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.) |
⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |