| Metamath
Proof Explorer Theorem List (p. 43 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | rexin 4201 | Restricted existential quantification over intersection. (Contributed by Peter Mazsa, 17-Dec-2018.) |
| ⊢ (∃𝑥 ∈ (𝐴 ∩ 𝐵)𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝜑)) | ||
| Theorem | dfss7 4202* | Alternate definition of subclass relationship. (Contributed by AV, 1-Aug-2022.) |
| ⊢ (𝐵 ⊆ 𝐴 ↔ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = 𝐵) | ||
| Syntax | csymdif 4203 | Declare the syntax for symmetric difference. |
| class (𝐴 △ 𝐵) | ||
| Definition | df-symdif 4204 | Define the symmetric difference of two classes. Alternate definitions are dfsymdif2 4212, dfsymdif3 4257 and dfsymdif4 4210. (Contributed by Scott Fenton, 31-Mar-2012.) |
| ⊢ (𝐴 △ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) | ||
| Theorem | symdifcom 4205 | Symmetric difference commutes. (Contributed by Scott Fenton, 24-Apr-2012.) |
| ⊢ (𝐴 △ 𝐵) = (𝐵 △ 𝐴) | ||
| Theorem | symdifeq1 4206 | Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.) |
| ⊢ (𝐴 = 𝐵 → (𝐴 △ 𝐶) = (𝐵 △ 𝐶)) | ||
| Theorem | symdifeq2 4207 | Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 △ 𝐴) = (𝐶 △ 𝐵)) | ||
| Theorem | nfsymdif 4208 | Hypothesis builder for symmetric difference. (Contributed by Scott Fenton, 19-Feb-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 △ 𝐵) | ||
| Theorem | elsymdif 4209 | Membership in a symmetric difference. (Contributed by Scott Fenton, 31-Mar-2012.) |
| ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ ¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) | ||
| Theorem | dfsymdif4 4210* | Alternate definition of the symmetric difference. (Contributed by NM, 17-Aug-2004.) (Revised by AV, 17-Aug-2022.) |
| ⊢ (𝐴 △ 𝐵) = {𝑥 ∣ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)} | ||
| Theorem | elsymdifxor 4211 | Membership in a symmetric difference is an exclusive-or relationship. (Contributed by David A. Wheeler, 26-Apr-2020.) (Proof shortened by BJ, 13-Aug-2022.) |
| ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ (𝐴 ∈ 𝐵 ⊻ 𝐴 ∈ 𝐶)) | ||
| Theorem | dfsymdif2 4212* | Alternate definition of the symmetric difference. (Contributed by BJ, 30-Apr-2020.) |
| ⊢ (𝐴 △ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)} | ||
| Theorem | symdifass 4213 | Symmetric difference is associative. (Contributed by Scott Fenton, 24-Apr-2012.) (Proof shortened by BJ, 7-Sep-2022.) |
| ⊢ ((𝐴 △ 𝐵) △ 𝐶) = (𝐴 △ (𝐵 △ 𝐶)) | ||
| Theorem | difsssymdif 4214 | The symmetric difference contains one of the differences. (Proposed by BJ, 18-Aug-2022.) (Contributed by AV, 19-Aug-2022.) |
| ⊢ (𝐴 ∖ 𝐵) ⊆ (𝐴 △ 𝐵) | ||
| Theorem | difsymssdifssd 4215 | If the symmetric difference is contained in 𝐶, so is one of the differences. (Contributed by AV, 17-Aug-2022.) |
| ⊢ (𝜑 → (𝐴 △ 𝐵) ⊆ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐶) | ||
| Theorem | unabs 4216 | Absorption law for union. (Contributed by NM, 16-Apr-2006.) |
| ⊢ (𝐴 ∪ (𝐴 ∩ 𝐵)) = 𝐴 | ||
| Theorem | inabs 4217 | Absorption law for intersection. (Contributed by NM, 16-Apr-2006.) |
| ⊢ (𝐴 ∩ (𝐴 ∪ 𝐵)) = 𝐴 | ||
| Theorem | nssinpss 4218 | Negation of subclass expressed in terms of intersection and proper subclass. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) ⊊ 𝐴) | ||
| Theorem | nsspssun 4219 | Negation of subclass expressed in terms of proper subclass and union. (Contributed by NM, 15-Sep-2004.) |
| ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ 𝐵 ⊊ (𝐴 ∪ 𝐵)) | ||
| Theorem | dfss4 4220 | Subclass defined in terms of class difference. See comments under dfun2 4221. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴) | ||
| Theorem | dfun2 4221 | An alternate definition of the union of two classes in terms of class difference, requiring no dummy variables. Along with dfin2 4222 and dfss4 4220 it shows we can express union, intersection, and subset directly in terms of the single "primitive" operation ∖ (class difference). (Contributed by NM, 10-Jun-2004.) |
| ⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) | ||
| Theorem | dfin2 4222 | An alternate definition of the intersection of two classes in terms of class difference, requiring no dummy variables. See comments under dfun2 4221. Another version is given by dfin4 4229. (Contributed by NM, 10-Jun-2004.) |
| ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (V ∖ 𝐵)) | ||
| Theorem | difin 4223 | Difference with intersection. Theorem 33 of [Suppes] p. 29. (Contributed by NM, 31-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | ||
| Theorem | ssdifim 4224 | Implication of a class difference with a subclass. (Contributed by AV, 3-Jan-2022.) |
| ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 = (𝑉 ∖ 𝐴)) → 𝐴 = (𝑉 ∖ 𝐵)) | ||
| Theorem | ssdifsym 4225 | Symmetric class differences for subclasses. (Contributed by AV, 3-Jan-2022.) |
| ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 ⊆ 𝑉) → (𝐵 = (𝑉 ∖ 𝐴) ↔ 𝐴 = (𝑉 ∖ 𝐵))) | ||
| Theorem | dfss5 4226* | Alternate definition of subclass relationship: a class 𝐴 is a subclass of another class 𝐵 iff each element of 𝐴 is equal to an element of 𝐵. (Contributed by AV, 13-Nov-2020.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝑦) | ||
| Theorem | dfun3 4227 | Union defined in terms of intersection (De Morgan's law). Definition of union in [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
| ⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) | ||
| Theorem | dfin3 4228 | Intersection defined in terms of union (De Morgan's law). Similar to Exercise 4.10(n) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
| ⊢ (𝐴 ∩ 𝐵) = (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) | ||
| Theorem | dfin4 4229 | Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.) |
| ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) | ||
| Theorem | invdif 4230 | Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.) |
| ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | ||
| Theorem | indif 4231 | Intersection with class difference. Theorem 34 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
| ⊢ (𝐴 ∩ (𝐴 ∖ 𝐵)) = (𝐴 ∖ 𝐵) | ||
| Theorem | indif2 4232 | Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.) |
| ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) | ||
| Theorem | indif1 4233 | Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((𝐴 ∖ 𝐶) ∩ 𝐵) = ((𝐴 ∩ 𝐵) ∖ 𝐶) | ||
| Theorem | indifcom 4234 | Commutation law for intersection and difference. (Contributed by Scott Fenton, 18-Feb-2013.) |
| ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = (𝐵 ∩ (𝐴 ∖ 𝐶)) | ||
| Theorem | indi 4235 | Distributive law for intersection over union. Exercise 10 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) | ||
| Theorem | undi 4236 | Distributive law for union over intersection. Exercise 11 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝐴 ∪ (𝐵 ∩ 𝐶)) = ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)) | ||
| Theorem | indir 4237 | Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
| ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) | ||
| Theorem | undir 4238 | Distributive law for union over intersection. Theorem 29 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
| ⊢ ((𝐴 ∩ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)) | ||
| Theorem | unineq 4239 | Infer equality from equalities of union and intersection. Exercise 20 of [Enderton] p. 32 and its converse. (Contributed by NM, 10-Aug-2004.) |
| ⊢ (((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) ↔ 𝐴 = 𝐵) | ||
| Theorem | uneqin 4240 | Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∪ 𝐵) = (𝐴 ∩ 𝐵) ↔ 𝐴 = 𝐵) | ||
| Theorem | difundi 4241 | Distributive law for class difference. Theorem 39 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
| ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∩ (𝐴 ∖ 𝐶)) | ||
| Theorem | difundir 4242 | Distributive law for class difference. (Contributed by NM, 17-Aug-2004.) |
| ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) | ||
| Theorem | difindi 4243 | Distributive law for class difference. Theorem 40 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
| ⊢ (𝐴 ∖ (𝐵 ∩ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) | ||
| Theorem | difindir 4244 | Distributive law for class difference. (Contributed by NM, 17-Aug-2004.) |
| ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∩ (𝐵 ∖ 𝐶)) | ||
| Theorem | indifdi 4245 | Distribute intersection over difference. (Contributed by BTernaryTau, 14-Aug-2024.) |
| ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ (𝐴 ∩ 𝐶)) | ||
| Theorem | indifdir 4246 | Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.) (Revised by BTernaryTau, 14-Aug-2024.) |
| ⊢ ((𝐴 ∖ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∖ (𝐵 ∩ 𝐶)) | ||
| Theorem | difdif2 4247 | Class difference by a class difference. (Contributed by Thierry Arnoux, 18-Dec-2017.) |
| ⊢ (𝐴 ∖ (𝐵 ∖ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) | ||
| Theorem | undm 4248 | De Morgan's law for union. Theorem 5.2(13) of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.) |
| ⊢ (V ∖ (𝐴 ∪ 𝐵)) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵)) | ||
| Theorem | indm 4249 | De Morgan's law for intersection. Theorem 5.2(13') of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.) |
| ⊢ (V ∖ (𝐴 ∩ 𝐵)) = ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) | ||
| Theorem | difun1 4250 | A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.) |
| ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∖ 𝐶) | ||
| Theorem | undif3 4251 | An equality involving class union and class difference. The first equality of Exercise 13 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 17-Apr-2012.) (Proof shortened by JJ, 13-Jul-2021.) |
| ⊢ (𝐴 ∪ (𝐵 ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)) | ||
| Theorem | difin2 4252 | Represent a class difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = ((𝐶 ∖ 𝐵) ∩ 𝐴)) | ||
| Theorem | dif32 4253 | Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004.) |
| ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∖ 𝐵) | ||
| Theorem | difabs 4254 | Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009.) |
| ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) | ||
| Theorem | sscon34b 4255 | Relative complementation reverses inclusion of subclasses. Relativized version of complss 4102. (Contributed by RP, 3-Jun-2021.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴))) | ||
| Theorem | rcompleq 4256 | Two subclasses are equal if and only if their relative complements are equal. Relativized version of compleq 4103. (Contributed by RP, 10-Jun-2021.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 = 𝐵 ↔ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵))) | ||
| Theorem | dfsymdif3 4257 | Alternate definition of the symmetric difference, given in Example 4.1 of [Stoll] p. 262 (the original definition corresponds to [Stoll] p. 13). (Contributed by NM, 17-Aug-2004.) (Revised by BJ, 30-Apr-2020.) |
| ⊢ (𝐴 △ 𝐵) = ((𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵)) | ||
| Theorem | unabw 4258* | Union of two class abstractions. Version of unab 4259 using implicit substitution, which does not require ax-8 2115, ax-10 2146, ax-12 2182. (Contributed by GG, 15-Oct-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) ⇒ ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑦 ∣ (𝜒 ∨ 𝜃)} | ||
| Theorem | unab 4259 | Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∨ 𝜓)} | ||
| Theorem | inab 4260 | Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ({𝑥 ∣ 𝜑} ∩ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ 𝜓)} | ||
| Theorem | difab 4261 | Difference of two class abstractions. (Contributed by NM, 23-Oct-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ({𝑥 ∣ 𝜑} ∖ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)} | ||
| Theorem | abanssl 4262 | A class abstraction with a conjunction is a subset of the class abstraction with the left conjunct only. (Contributed by AV, 7-Aug-2024.) (Proof shortened by SN, 22-Aug-2024.) |
| ⊢ {𝑓 ∣ (𝜑 ∧ 𝜓)} ⊆ {𝑓 ∣ 𝜑} | ||
| Theorem | abanssr 4263 | A class abstraction with a conjunction is a subset of the class abstraction with the right conjunct only. (Contributed by AV, 7-Aug-2024.) (Proof shortened by SN, 22-Aug-2024.) |
| ⊢ {𝑓 ∣ (𝜑 ∧ 𝜓)} ⊆ {𝑓 ∣ 𝜓} | ||
| Theorem | notabw 4264* | A class abstraction defined by a negation. Version of notab 4265 using implicit substitution, which does not require ax-10 2146, ax-12 2182. (Contributed by GG, 15-Oct-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑦 ∣ 𝜓}) | ||
| Theorem | notab 4265 | A class abstraction defined by a negation. (Contributed by FL, 18-Sep-2010.) |
| ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥 ∣ 𝜑}) | ||
| Theorem | unrab 4266 | Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004.) |
| ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} | ||
| Theorem | inrab 4267 | Intersection of two restricted class abstractions. (Contributed by NM, 1-Sep-2006.) |
| ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} | ||
| Theorem | inrab2 4268* | Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.) |
| ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} | ||
| Theorem | difrab 4269 | Difference of two restricted class abstractions. (Contributed by NM, 23-Oct-2004.) |
| ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜓)} | ||
| Theorem | dfrab3 4270* | Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.) |
| ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | ||
| Theorem | dfrab2 4271* | Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.) (Proof shortened by BJ, 22-Apr-2019.) |
| ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐴) | ||
| Theorem | rabdif 4272* | Move difference in and out of a restricted class abstraction. (Contributed by Steven Nguyen, 6-Jun-2023.) |
| ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ 𝐵) = {𝑥 ∈ (𝐴 ∖ 𝐵) ∣ 𝜑} | ||
| Theorem | notrab 4273* | Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝜑}) = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} | ||
| Theorem | dfrab3ss 4274* | Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 8-Nov-2015.) |
| ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑})) | ||
| Theorem | rabun2 4275 | Abstraction restricted to a union. (Contributed by Stefan O'Rear, 5-Feb-2015.) |
| ⊢ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜑} = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ 𝜑}) | ||
| Theorem | reuun2 4276 | Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005.) (Proof shortened by Wolf Lammen, 15-May-2025.) |
| ⊢ (¬ ∃𝑥 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | reuss2 4277* | Transfer uniqueness to a smaller subclass. (Contributed by NM, 20-Oct-2005.) |
| ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) → ∃!𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | reuss 4278* | Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | reuun1 4279* | Transfer uniqueness to a smaller class. (Contributed by NM, 21-Oct-2005.) |
| ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴 ∪ 𝐵)(𝜑 ∨ 𝜓)) → ∃!𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | reupick 4280* | Restricted uniqueness "picks" a member of a subclass. (Contributed by NM, 21-Aug-1999.) |
| ⊢ (((𝐴 ⊆ 𝐵 ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑)) ∧ 𝜑) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | ||
| Theorem | reupick3 4281* | Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016.) |
| ⊢ ((∃!𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ 𝑥 ∈ 𝐴) → (𝜑 → 𝜓)) | ||
| Theorem | reupick2 4282* | Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 15-Dec-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| ⊢ (((∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 𝜓 ∧ ∃!𝑥 ∈ 𝐴 𝜑) ∧ 𝑥 ∈ 𝐴) → (𝜑 ↔ 𝜓)) | ||
| Theorem | euelss 4283* | Transfer uniqueness of an element to a smaller subclass. (Contributed by AV, 14-Apr-2020.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 𝑥 ∈ 𝐴 ∧ ∃!𝑥 𝑥 ∈ 𝐵) → ∃!𝑥 𝑥 ∈ 𝐴) | ||
| Syntax | c0 4284 | Extend class notation to include the empty set. |
| class ∅ | ||
| Definition | df-nul 4285 | Define the empty set. More precisely, we should write "empty class". It will be posited in ax-nul 5248 that an empty set exists. Then, by uniqueness among classes (eq0 4301, as opposed to the weaker uniqueness among sets, nulmo 2710), it will follow that ∅ is indeed a set (0ex 5249). Special case of Exercise 4.10(o) of [Mendelson] p. 231. For a more traditional definition, but requiring a dummy variable, see dfnul2 4287. (Contributed by NM, 17-Jun-1993.) Clarify that at this point, it is not established that it is a set. (Revised by BJ, 22-Sep-2022.) |
| ⊢ ∅ = (V ∖ V) | ||
| Theorem | dfnul4 4286 | Alternate definition of the empty class/set. (Contributed by BJ, 30-Nov-2019.) Avoid ax-8 2115, df-clel 2808. (Revised by GG, 3-Sep-2024.) Prove directly from definition to allow shortening dfnul2 4287. (Revised by BJ, 23-Sep-2024.) |
| ⊢ ∅ = {𝑥 ∣ ⊥} | ||
| Theorem | dfnul2 4287 | Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.) Remove dependency on ax-10 2146, ax-11 2162, and ax-12 2182. (Revised by Steven Nguyen, 3-May-2023.) (Proof shortened by BJ, 23-Sep-2024.) |
| ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} | ||
| Theorem | dfnul3 4288 | Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.) (Proof shortened by BJ, 23-Sep-2024.) |
| ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | ||
| Theorem | noel 4289 | The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) Remove dependency on ax-10 2146, ax-11 2162, and ax-12 2182. (Revised by Steven Nguyen, 3-May-2023.) (Proof shortened by BJ, 23-Sep-2024.) |
| ⊢ ¬ 𝐴 ∈ ∅ | ||
| Theorem | nel02 4290 | The empty set has no elements. (Contributed by Peter Mazsa, 4-Jan-2018.) |
| ⊢ (𝐴 = ∅ → ¬ 𝐵 ∈ 𝐴) | ||
| Theorem | n0i 4291 | If a class has elements, then it is not empty. (Contributed by NM, 31-Dec-1993.) |
| ⊢ (𝐵 ∈ 𝐴 → ¬ 𝐴 = ∅) | ||
| Theorem | ne0i 4292 | If a class has elements, then it is nonempty. (Contributed by NM, 31-Dec-1993.) |
| ⊢ (𝐵 ∈ 𝐴 → 𝐴 ≠ ∅) | ||
| Theorem | ne0d 4293 | Deduction form of ne0i 4292. If a class has elements, then it is nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
| ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝐴 ≠ ∅) | ||
| Theorem | n0ii 4294 | If a class has elements, then it is not empty. Inference associated with n0i 4291. (Contributed by BJ, 15-Jul-2021.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ¬ 𝐵 = ∅ | ||
| Theorem | ne0ii 4295 | If a class has elements, then it is nonempty. Inference associated with ne0i 4292. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ 𝐵 ≠ ∅ | ||
| Theorem | vn0 4296 | The universal class is not equal to the empty set. (Contributed by NM, 11-Sep-2008.) Avoid ax-8 2115, df-clel 2808. (Revised by GG, 6-Sep-2024.) |
| ⊢ V ≠ ∅ | ||
| Theorem | vn0ALT 4297 | Alternate proof of vn0 4296. Shorter, but requiring df-clel 2808, ax-8 2115. (Contributed by NM, 11-Sep-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ V ≠ ∅ | ||
| Theorem | eq0f 4298 | A class is equal to the empty set if and only if it has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by BJ, 15-Jul-2021.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥 ∈ 𝐴) | ||
| Theorem | neq0f 4299 | A class is not empty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of neq0 4303 requires only that 𝑥 not be free in, rather than not occur in, 𝐴. (Contributed by BJ, 15-Jul-2021.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (¬ 𝐴 = ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | ||
| Theorem | n0f 4300 | A class is nonempty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0 4304 requires only that 𝑥 not be free in, rather than not occur in, 𝐴. (Contributed by NM, 17-Oct-2003.) |
| ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |