| Metamath
Proof Explorer Theorem List (p. 43 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | inss2 4201 | The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
| ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | ||
| Theorem | ssin 4202 | Subclass of intersection. Theorem 2.8(vii) of [Monk1] p. 26. (Contributed by NM, 15-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | ||
| Theorem | ssini 4203 | An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.) |
| ⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐴 ⊆ 𝐶 ⇒ ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) | ||
| Theorem | ssind 4204 | A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) | ||
| Theorem | ssrin 4205 | Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | ||
| Theorem | sslin 4206 | Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.) |
| ⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) | ||
| Theorem | ssrind 4207 | Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | ||
| Theorem | ss2in 4208 | Intersection of subclasses. (Contributed by NM, 5-May-2000.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) | ||
| Theorem | ssinss1 4209 | Intersection preserves subclass relationship. (Contributed by NM, 14-Sep-1999.) |
| ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) | ||
| Theorem | ssinss1d 4210 | Intersection preserves subclass relationship. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) ⊆ 𝐶) | ||
| Theorem | inss 4211 | Inclusion of an intersection of two classes. (Contributed by NM, 30-Oct-2014.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∨ 𝐵 ⊆ 𝐶) → (𝐴 ∩ 𝐵) ⊆ 𝐶) | ||
| Theorem | ralin 4212 | Restricted universal quantification over intersection. (Contributed by Peter Mazsa, 8-Sep-2023.) |
| ⊢ (∀𝑥 ∈ (𝐴 ∩ 𝐵)𝜑 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑)) | ||
| Theorem | rexin 4213 | Restricted existential quantification over intersection. (Contributed by Peter Mazsa, 17-Dec-2018.) |
| ⊢ (∃𝑥 ∈ (𝐴 ∩ 𝐵)𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝜑)) | ||
| Theorem | dfss7 4214* | Alternate definition of subclass relationship. (Contributed by AV, 1-Aug-2022.) |
| ⊢ (𝐵 ⊆ 𝐴 ↔ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = 𝐵) | ||
| Syntax | csymdif 4215 | Declare the syntax for symmetric difference. |
| class (𝐴 △ 𝐵) | ||
| Definition | df-symdif 4216 | Define the symmetric difference of two classes. Alternate definitions are dfsymdif2 4224, dfsymdif3 4269 and dfsymdif4 4222. (Contributed by Scott Fenton, 31-Mar-2012.) |
| ⊢ (𝐴 △ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) | ||
| Theorem | symdifcom 4217 | Symmetric difference commutes. (Contributed by Scott Fenton, 24-Apr-2012.) |
| ⊢ (𝐴 △ 𝐵) = (𝐵 △ 𝐴) | ||
| Theorem | symdifeq1 4218 | Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.) |
| ⊢ (𝐴 = 𝐵 → (𝐴 △ 𝐶) = (𝐵 △ 𝐶)) | ||
| Theorem | symdifeq2 4219 | Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.) |
| ⊢ (𝐴 = 𝐵 → (𝐶 △ 𝐴) = (𝐶 △ 𝐵)) | ||
| Theorem | nfsymdif 4220 | Hypothesis builder for symmetric difference. (Contributed by Scott Fenton, 19-Feb-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) |
| ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 △ 𝐵) | ||
| Theorem | elsymdif 4221 | Membership in a symmetric difference. (Contributed by Scott Fenton, 31-Mar-2012.) |
| ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ ¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) | ||
| Theorem | dfsymdif4 4222* | Alternate definition of the symmetric difference. (Contributed by NM, 17-Aug-2004.) (Revised by AV, 17-Aug-2022.) |
| ⊢ (𝐴 △ 𝐵) = {𝑥 ∣ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)} | ||
| Theorem | elsymdifxor 4223 | Membership in a symmetric difference is an exclusive-or relationship. (Contributed by David A. Wheeler, 26-Apr-2020.) (Proof shortened by BJ, 13-Aug-2022.) |
| ⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ (𝐴 ∈ 𝐵 ⊻ 𝐴 ∈ 𝐶)) | ||
| Theorem | dfsymdif2 4224* | Alternate definition of the symmetric difference. (Contributed by BJ, 30-Apr-2020.) |
| ⊢ (𝐴 △ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)} | ||
| Theorem | symdifass 4225 | Symmetric difference is associative. (Contributed by Scott Fenton, 24-Apr-2012.) (Proof shortened by BJ, 7-Sep-2022.) |
| ⊢ ((𝐴 △ 𝐵) △ 𝐶) = (𝐴 △ (𝐵 △ 𝐶)) | ||
| Theorem | difsssymdif 4226 | The symmetric difference contains one of the differences. (Proposed by BJ, 18-Aug-2022.) (Contributed by AV, 19-Aug-2022.) |
| ⊢ (𝐴 ∖ 𝐵) ⊆ (𝐴 △ 𝐵) | ||
| Theorem | difsymssdifssd 4227 | If the symmetric difference is contained in 𝐶, so is one of the differences. (Contributed by AV, 17-Aug-2022.) |
| ⊢ (𝜑 → (𝐴 △ 𝐵) ⊆ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐶) | ||
| Theorem | unabs 4228 | Absorption law for union. (Contributed by NM, 16-Apr-2006.) |
| ⊢ (𝐴 ∪ (𝐴 ∩ 𝐵)) = 𝐴 | ||
| Theorem | inabs 4229 | Absorption law for intersection. (Contributed by NM, 16-Apr-2006.) |
| ⊢ (𝐴 ∩ (𝐴 ∪ 𝐵)) = 𝐴 | ||
| Theorem | nssinpss 4230 | Negation of subclass expressed in terms of intersection and proper subclass. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) ⊊ 𝐴) | ||
| Theorem | nsspssun 4231 | Negation of subclass expressed in terms of proper subclass and union. (Contributed by NM, 15-Sep-2004.) |
| ⊢ (¬ 𝐴 ⊆ 𝐵 ↔ 𝐵 ⊊ (𝐴 ∪ 𝐵)) | ||
| Theorem | dfss4 4232 | Subclass defined in terms of class difference. See comments under dfun2 4233. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴) | ||
| Theorem | dfun2 4233 | An alternate definition of the union of two classes in terms of class difference, requiring no dummy variables. Along with dfin2 4234 and dfss4 4232 it shows we can express union, intersection, and subset directly in terms of the single "primitive" operation ∖ (class difference). (Contributed by NM, 10-Jun-2004.) |
| ⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) | ||
| Theorem | dfin2 4234 | An alternate definition of the intersection of two classes in terms of class difference, requiring no dummy variables. See comments under dfun2 4233. Another version is given by dfin4 4241. (Contributed by NM, 10-Jun-2004.) |
| ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (V ∖ 𝐵)) | ||
| Theorem | difin 4235 | Difference with intersection. Theorem 33 of [Suppes] p. 29. (Contributed by NM, 31-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | ||
| Theorem | ssdifim 4236 | Implication of a class difference with a subclass. (Contributed by AV, 3-Jan-2022.) |
| ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 = (𝑉 ∖ 𝐴)) → 𝐴 = (𝑉 ∖ 𝐵)) | ||
| Theorem | ssdifsym 4237 | Symmetric class differences for subclasses. (Contributed by AV, 3-Jan-2022.) |
| ⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 ⊆ 𝑉) → (𝐵 = (𝑉 ∖ 𝐴) ↔ 𝐴 = (𝑉 ∖ 𝐵))) | ||
| Theorem | dfss5 4238* | Alternate definition of subclass relationship: a class 𝐴 is a subclass of another class 𝐵 iff each element of 𝐴 is equal to an element of 𝐵. (Contributed by AV, 13-Nov-2020.) |
| ⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝑦) | ||
| Theorem | dfun3 4239 | Union defined in terms of intersection (De Morgan's law). Definition of union in [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
| ⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) | ||
| Theorem | dfin3 4240 | Intersection defined in terms of union (De Morgan's law). Similar to Exercise 4.10(n) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
| ⊢ (𝐴 ∩ 𝐵) = (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) | ||
| Theorem | dfin4 4241 | Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.) |
| ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) | ||
| Theorem | invdif 4242 | Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.) |
| ⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | ||
| Theorem | indif 4243 | Intersection with class difference. Theorem 34 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
| ⊢ (𝐴 ∩ (𝐴 ∖ 𝐵)) = (𝐴 ∖ 𝐵) | ||
| Theorem | indif2 4244 | Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.) |
| ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) | ||
| Theorem | indif1 4245 | Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.) |
| ⊢ ((𝐴 ∖ 𝐶) ∩ 𝐵) = ((𝐴 ∩ 𝐵) ∖ 𝐶) | ||
| Theorem | indifcom 4246 | Commutation law for intersection and difference. (Contributed by Scott Fenton, 18-Feb-2013.) |
| ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = (𝐵 ∩ (𝐴 ∖ 𝐶)) | ||
| Theorem | indi 4247 | Distributive law for intersection over union. Exercise 10 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) | ||
| Theorem | undi 4248 | Distributive law for union over intersection. Exercise 11 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ (𝐴 ∪ (𝐵 ∩ 𝐶)) = ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)) | ||
| Theorem | indir 4249 | Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
| ⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) | ||
| Theorem | undir 4250 | Distributive law for union over intersection. Theorem 29 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
| ⊢ ((𝐴 ∩ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)) | ||
| Theorem | unineq 4251 | Infer equality from equalities of union and intersection. Exercise 20 of [Enderton] p. 32 and its converse. (Contributed by NM, 10-Aug-2004.) |
| ⊢ (((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) ↔ 𝐴 = 𝐵) | ||
| Theorem | uneqin 4252 | Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ((𝐴 ∪ 𝐵) = (𝐴 ∩ 𝐵) ↔ 𝐴 = 𝐵) | ||
| Theorem | difundi 4253 | Distributive law for class difference. Theorem 39 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
| ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∩ (𝐴 ∖ 𝐶)) | ||
| Theorem | difundir 4254 | Distributive law for class difference. (Contributed by NM, 17-Aug-2004.) |
| ⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) | ||
| Theorem | difindi 4255 | Distributive law for class difference. Theorem 40 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
| ⊢ (𝐴 ∖ (𝐵 ∩ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) | ||
| Theorem | difindir 4256 | Distributive law for class difference. (Contributed by NM, 17-Aug-2004.) |
| ⊢ ((𝐴 ∩ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∩ (𝐵 ∖ 𝐶)) | ||
| Theorem | indifdi 4257 | Distribute intersection over difference. (Contributed by BTernaryTau, 14-Aug-2024.) |
| ⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ (𝐴 ∩ 𝐶)) | ||
| Theorem | indifdir 4258 | Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.) (Revised by BTernaryTau, 14-Aug-2024.) |
| ⊢ ((𝐴 ∖ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∖ (𝐵 ∩ 𝐶)) | ||
| Theorem | difdif2 4259 | Class difference by a class difference. (Contributed by Thierry Arnoux, 18-Dec-2017.) |
| ⊢ (𝐴 ∖ (𝐵 ∖ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) | ||
| Theorem | undm 4260 | De Morgan's law for union. Theorem 5.2(13) of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.) |
| ⊢ (V ∖ (𝐴 ∪ 𝐵)) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵)) | ||
| Theorem | indm 4261 | De Morgan's law for intersection. Theorem 5.2(13') of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.) |
| ⊢ (V ∖ (𝐴 ∩ 𝐵)) = ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) | ||
| Theorem | difun1 4262 | A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.) |
| ⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∖ 𝐶) | ||
| Theorem | undif3 4263 | An equality involving class union and class difference. The first equality of Exercise 13 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 17-Apr-2012.) (Proof shortened by JJ, 13-Jul-2021.) |
| ⊢ (𝐴 ∪ (𝐵 ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)) | ||
| Theorem | difin2 4264 | Represent a class difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = ((𝐶 ∖ 𝐵) ∩ 𝐴)) | ||
| Theorem | dif32 4265 | Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004.) |
| ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∖ 𝐵) | ||
| Theorem | difabs 4266 | Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009.) |
| ⊢ ((𝐴 ∖ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) | ||
| Theorem | sscon34b 4267 | Relative complementation reverses inclusion of subclasses. Relativized version of complss 4114. (Contributed by RP, 3-Jun-2021.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴))) | ||
| Theorem | rcompleq 4268 | Two subclasses are equal if and only if their relative complements are equal. Relativized version of compleq 4115. (Contributed by RP, 10-Jun-2021.) |
| ⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 = 𝐵 ↔ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵))) | ||
| Theorem | dfsymdif3 4269 | Alternate definition of the symmetric difference, given in Example 4.1 of [Stoll] p. 262 (the original definition corresponds to [Stoll] p. 13). (Contributed by NM, 17-Aug-2004.) (Revised by BJ, 30-Apr-2020.) |
| ⊢ (𝐴 △ 𝐵) = ((𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵)) | ||
| Theorem | unabw 4270* | Union of two class abstractions. Version of unab 4271 using implicit substitution, which does not require ax-8 2111, ax-10 2142, ax-12 2178. (Contributed by GG, 15-Oct-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) ⇒ ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑦 ∣ (𝜒 ∨ 𝜃)} | ||
| Theorem | unab 4271 | Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∨ 𝜓)} | ||
| Theorem | inab 4272 | Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ({𝑥 ∣ 𝜑} ∩ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ 𝜓)} | ||
| Theorem | difab 4273 | Difference of two class abstractions. (Contributed by NM, 23-Oct-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| ⊢ ({𝑥 ∣ 𝜑} ∖ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)} | ||
| Theorem | abanssl 4274 | A class abstraction with a conjunction is a subset of the class abstraction with the left conjunct only. (Contributed by AV, 7-Aug-2024.) (Proof shortened by SN, 22-Aug-2024.) |
| ⊢ {𝑓 ∣ (𝜑 ∧ 𝜓)} ⊆ {𝑓 ∣ 𝜑} | ||
| Theorem | abanssr 4275 | A class abstraction with a conjunction is a subset of the class abstraction with the right conjunct only. (Contributed by AV, 7-Aug-2024.) (Proof shortened by SN, 22-Aug-2024.) |
| ⊢ {𝑓 ∣ (𝜑 ∧ 𝜓)} ⊆ {𝑓 ∣ 𝜓} | ||
| Theorem | notabw 4276* | A class abstraction defined by a negation. Version of notab 4277 using implicit substitution, which does not require ax-10 2142, ax-12 2178. (Contributed by GG, 15-Oct-2024.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑦 ∣ 𝜓}) | ||
| Theorem | notab 4277 | A class abstraction defined by a negation. (Contributed by FL, 18-Sep-2010.) |
| ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥 ∣ 𝜑}) | ||
| Theorem | unrab 4278 | Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004.) |
| ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} | ||
| Theorem | inrab 4279 | Intersection of two restricted class abstractions. (Contributed by NM, 1-Sep-2006.) |
| ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} | ||
| Theorem | inrab2 4280* | Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.) |
| ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} | ||
| Theorem | difrab 4281 | Difference of two restricted class abstractions. (Contributed by NM, 23-Oct-2004.) |
| ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜓)} | ||
| Theorem | dfrab3 4282* | Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.) |
| ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | ||
| Theorem | dfrab2 4283* | Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.) (Proof shortened by BJ, 22-Apr-2019.) |
| ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = ({𝑥 ∣ 𝜑} ∩ 𝐴) | ||
| Theorem | rabdif 4284* | Move difference in and out of a restricted class abstraction. (Contributed by Steven Nguyen, 6-Jun-2023.) |
| ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ 𝐵) = {𝑥 ∈ (𝐴 ∖ 𝐵) ∣ 𝜑} | ||
| Theorem | notrab 4285* | Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015.) |
| ⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝜑}) = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} | ||
| Theorem | dfrab3ss 4286* | Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 8-Nov-2015.) |
| ⊢ (𝐴 ⊆ 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∈ 𝐵 ∣ 𝜑})) | ||
| Theorem | rabun2 4287 | Abstraction restricted to a union. (Contributed by Stefan O'Rear, 5-Feb-2015.) |
| ⊢ {𝑥 ∈ (𝐴 ∪ 𝐵) ∣ 𝜑} = ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐵 ∣ 𝜑}) | ||
| Theorem | reuun2 4288 | Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005.) (Proof shortened by Wolf Lammen, 15-May-2025.) |
| ⊢ (¬ ∃𝑥 ∈ 𝐵 𝜑 → (∃!𝑥 ∈ (𝐴 ∪ 𝐵)𝜑 ↔ ∃!𝑥 ∈ 𝐴 𝜑)) | ||
| Theorem | reuss2 4289* | Transfer uniqueness to a smaller subclass. (Contributed by NM, 20-Oct-2005.) |
| ⊢ (((𝐴 ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝜓)) ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜓)) → ∃!𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | reuss 4290* | Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑) → ∃!𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | reuun1 4291* | Transfer uniqueness to a smaller class. (Contributed by NM, 21-Oct-2005.) |
| ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴 ∪ 𝐵)(𝜑 ∨ 𝜓)) → ∃!𝑥 ∈ 𝐴 𝜑) | ||
| Theorem | reupick 4292* | Restricted uniqueness "picks" a member of a subclass. (Contributed by NM, 21-Aug-1999.) |
| ⊢ (((𝐴 ⊆ 𝐵 ∧ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃!𝑥 ∈ 𝐵 𝜑)) ∧ 𝜑) → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | ||
| Theorem | reupick3 4293* | Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016.) |
| ⊢ ((∃!𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ 𝑥 ∈ 𝐴) → (𝜑 → 𝜓)) | ||
| Theorem | reupick2 4294* | Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 15-Dec-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| ⊢ (((∀𝑥 ∈ 𝐴 (𝜓 → 𝜑) ∧ ∃𝑥 ∈ 𝐴 𝜓 ∧ ∃!𝑥 ∈ 𝐴 𝜑) ∧ 𝑥 ∈ 𝐴) → (𝜑 ↔ 𝜓)) | ||
| Theorem | euelss 4295* | Transfer uniqueness of an element to a smaller subclass. (Contributed by AV, 14-Apr-2020.) |
| ⊢ ((𝐴 ⊆ 𝐵 ∧ ∃𝑥 𝑥 ∈ 𝐴 ∧ ∃!𝑥 𝑥 ∈ 𝐵) → ∃!𝑥 𝑥 ∈ 𝐴) | ||
| Syntax | c0 4296 | Extend class notation to include the empty set. |
| class ∅ | ||
| Definition | df-nul 4297 | Define the empty set. More precisely, we should write "empty class". It will be posited in ax-nul 5261 that an empty set exists. Then, by uniqueness among classes (eq0 4313, as opposed to the weaker uniqueness among sets, nulmo 2706), it will follow that ∅ is indeed a set (0ex 5262). Special case of Exercise 4.10(o) of [Mendelson] p. 231. For a more traditional definition, but requiring a dummy variable, see dfnul2 4299. (Contributed by NM, 17-Jun-1993.) Clarify that at this point, it is not established that it is a set. (Revised by BJ, 22-Sep-2022.) |
| ⊢ ∅ = (V ∖ V) | ||
| Theorem | dfnul4 4298 | Alternate definition of the empty class/set. (Contributed by BJ, 30-Nov-2019.) Avoid ax-8 2111, df-clel 2803. (Revised by GG, 3-Sep-2024.) Prove directly from definition to allow shortening dfnul2 4299. (Revised by BJ, 23-Sep-2024.) |
| ⊢ ∅ = {𝑥 ∣ ⊥} | ||
| Theorem | dfnul2 4299 | Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.) Remove dependency on ax-10 2142, ax-11 2158, and ax-12 2178. (Revised by Steven Nguyen, 3-May-2023.) (Proof shortened by BJ, 23-Sep-2024.) |
| ⊢ ∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥} | ||
| Theorem | dfnul3 4300 | Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.) (Proof shortened by BJ, 23-Sep-2024.) |
| ⊢ ∅ = {𝑥 ∈ 𝐴 ∣ ¬ 𝑥 ∈ 𝐴} | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |