HomeHome Metamath Proof Explorer
Theorem List (p. 43 of 454)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28701)
  Hilbert Space Explorer  Hilbert Space Explorer
(28702-30224)
  Users' Mathboxes  Users' Mathboxes
(30225-45333)
 

Theorem List for Metamath Proof Explorer - 4201-4300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremundi 4201 Distributive law for union over intersection. Exercise 11 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
(𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
 
Theoremindir 4202 Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
 
Theoremundir 4203 Distributive law for union over intersection. Theorem 29 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.)
((𝐴𝐵) ∪ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
 
Theoremunineq 4204 Infer equality from equalities of union and intersection. Exercise 20 of [Enderton] p. 32 and its converse. (Contributed by NM, 10-Aug-2004.)
(((𝐴𝐶) = (𝐵𝐶) ∧ (𝐴𝐶) = (𝐵𝐶)) ↔ 𝐴 = 𝐵)
 
Theoremuneqin 4205 Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
((𝐴𝐵) = (𝐴𝐵) ↔ 𝐴 = 𝐵)
 
Theoremdifundi 4206 Distributive law for class difference. Theorem 39 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
(𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∩ (𝐴𝐶))
 
Theoremdifundir 4207 Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∪ (𝐵𝐶))
 
Theoremdifindi 4208 Distributive law for class difference. Theorem 40 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.)
(𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
 
Theoremdifindir 4209 Distributive law for class difference. (Contributed by NM, 17-Aug-2004.)
((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∩ (𝐵𝐶))
 
Theoremindifdir 4210 Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.)
((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∖ (𝐵𝐶))
 
Theoremdifdif2 4211 Class difference by a class difference. (Contributed by Thierry Arnoux, 18-Dec-2017.)
(𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∪ (𝐴𝐶))
 
Theoremundm 4212 De Morgan's law for union. Theorem 5.2(13) of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.)
(V ∖ (𝐴𝐵)) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵))
 
Theoremindm 4213 De Morgan's law for intersection. Theorem 5.2(13') of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.)
(V ∖ (𝐴𝐵)) = ((V ∖ 𝐴) ∪ (V ∖ 𝐵))
 
Theoremdifun1 4214 A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.)
(𝐴 ∖ (𝐵𝐶)) = ((𝐴𝐵) ∖ 𝐶)
 
Theoremundif3 4215 An equality involving class union and class difference. The first equality of Exercise 13 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 17-Apr-2012.) (Proof shortened by JJ, 13-Jul-2021.)
(𝐴 ∪ (𝐵𝐶)) = ((𝐴𝐵) ∖ (𝐶𝐴))
 
Theoremdifin2 4216 Represent a class difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝐴𝐶 → (𝐴𝐵) = ((𝐶𝐵) ∩ 𝐴))
 
Theoremdif32 4217 Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004.)
((𝐴𝐵) ∖ 𝐶) = ((𝐴𝐶) ∖ 𝐵)
 
Theoremdifabs 4218 Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009.)
((𝐴𝐵) ∖ 𝐵) = (𝐴𝐵)
 
Theoremsscon34b 4219 Relative complementation reverses inclusion of subclasses. Relativized version of complss 4074. (Contributed by RP, 3-Jun-2021.)
((𝐴𝐶𝐵𝐶) → (𝐴𝐵 ↔ (𝐶𝐵) ⊆ (𝐶𝐴)))
 
Theoremrcompleq 4220 Two subclasses are equal if and only if their relative complements are equal. Relativized version of compleq 4075. (Contributed by RP, 10-Jun-2021.)
((𝐴𝐶𝐵𝐶) → (𝐴 = 𝐵 ↔ (𝐶𝐴) = (𝐶𝐵)))
 
Theoremdfsymdif3 4221 Alternate definition of the symmetric difference, given in Example 4.1 of [Stoll] p. 262 (the original definition corresponds to [Stoll] p. 13). (Contributed by NM, 17-Aug-2004.) (Revised by BJ, 30-Apr-2020.)
(𝐴𝐵) = ((𝐴𝐵) ∖ (𝐴𝐵))
 
2.1.13.6  Class abstractions with difference, union, and intersection of two classes
 
Theoremunab 4222 Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
({𝑥𝜑} ∪ {𝑥𝜓}) = {𝑥 ∣ (𝜑𝜓)}
 
Theoreminab 4223 Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
({𝑥𝜑} ∩ {𝑥𝜓}) = {𝑥 ∣ (𝜑𝜓)}
 
Theoremdifab 4224 Difference of two class abstractions. (Contributed by NM, 23-Oct-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
({𝑥𝜑} ∖ {𝑥𝜓}) = {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)}
 
Theoremnotab 4225 A class abstraction defined by a negation. (Contributed by FL, 18-Sep-2010.)
{𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥𝜑})
 
Theoremunrab 4226 Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004.)
({𝑥𝐴𝜑} ∪ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}
 
Theoreminrab 4227 Intersection of two restricted class abstractions. (Contributed by NM, 1-Sep-2006.)
({𝑥𝐴𝜑} ∩ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑𝜓)}
 
Theoreminrab2 4228* Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.)
({𝑥𝐴𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴𝐵) ∣ 𝜑}
 
Theoremdifrab 4229 Difference of two restricted class abstractions. (Contributed by NM, 23-Oct-2004.)
({𝑥𝐴𝜑} ∖ {𝑥𝐴𝜓}) = {𝑥𝐴 ∣ (𝜑 ∧ ¬ 𝜓)}
 
Theoremdfrab3 4230* Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013.)
{𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
 
Theoremdfrab2 4231* Alternate definition of restricted class abstraction. (Contributed by NM, 20-Sep-2003.) (Proof shortened by BJ, 22-Apr-2019.)
{𝑥𝐴𝜑} = ({𝑥𝜑} ∩ 𝐴)
 
Theoremnotrab 4232* Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015.)
(𝐴 ∖ {𝑥𝐴𝜑}) = {𝑥𝐴 ∣ ¬ 𝜑}
 
Theoremdfrab3ss 4233* Restricted class abstraction with a common superset. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 8-Nov-2015.)
(𝐴𝐵 → {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝐵𝜑}))
 
Theoremrabun2 4234 Abstraction restricted to a union. (Contributed by Stefan O'Rear, 5-Feb-2015.)
{𝑥 ∈ (𝐴𝐵) ∣ 𝜑} = ({𝑥𝐴𝜑} ∪ {𝑥𝐵𝜑})
 
2.1.13.7  Restricted uniqueness with difference, union, and intersection
 
Theoremreuss2 4235* Transfer uniqueness to a smaller subclass. (Contributed by NM, 20-Oct-2005.)
(((𝐴𝐵 ∧ ∀𝑥𝐴 (𝜑𝜓)) ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜓)) → ∃!𝑥𝐴 𝜑)
 
Theoremreuss 4236* Transfer uniqueness to a smaller subclass. (Contributed by NM, 21-Aug-1999.)
((𝐴𝐵 ∧ ∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑) → ∃!𝑥𝐴 𝜑)
 
Theoremreuun1 4237* Transfer uniqueness to a smaller class. (Contributed by NM, 21-Oct-2005.)
((∃𝑥𝐴 𝜑 ∧ ∃!𝑥 ∈ (𝐴𝐵)(𝜑𝜓)) → ∃!𝑥𝐴 𝜑)
 
Theoremreuun2 4238* Transfer uniqueness to a smaller or larger class. (Contributed by NM, 21-Oct-2005.)
(¬ ∃𝑥𝐵 𝜑 → (∃!𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∃!𝑥𝐴 𝜑))
 
Theoremreupick 4239* Restricted uniqueness "picks" a member of a subclass. (Contributed by NM, 21-Aug-1999.)
(((𝐴𝐵 ∧ (∃𝑥𝐴 𝜑 ∧ ∃!𝑥𝐵 𝜑)) ∧ 𝜑) → (𝑥𝐴𝑥𝐵))
 
Theoremreupick3 4240* Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 19-Nov-2016.)
((∃!𝑥𝐴 𝜑 ∧ ∃𝑥𝐴 (𝜑𝜓) ∧ 𝑥𝐴) → (𝜑𝜓))
 
Theoremreupick2 4241* Restricted uniqueness "picks" a member of a subclass. (Contributed by Mario Carneiro, 15-Dec-2013.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
(((∀𝑥𝐴 (𝜓𝜑) ∧ ∃𝑥𝐴 𝜓 ∧ ∃!𝑥𝐴 𝜑) ∧ 𝑥𝐴) → (𝜑𝜓))
 
Theoremeuelss 4242* Transfer uniqueness of an element to a smaller subclass. (Contributed by AV, 14-Apr-2020.)
((𝐴𝐵 ∧ ∃𝑥 𝑥𝐴 ∧ ∃!𝑥 𝑥𝐵) → ∃!𝑥 𝑥𝐴)
 
2.1.14  The empty set
 
Syntaxc0 4243 Extend class notation to include the empty set.
class
 
Definitiondf-nul 4244 Define the empty set. More precisely, we should write "empty class". It will be posited in ax-nul 5174 that an empty set exists. Then, by uniqueness among classes (eq0 4258, as opposed to the weaker uniqueness among sets, nulmo 2775), it will follow that is indeed a set (0ex 5175). Special case of Exercise 4.10(o) of [Mendelson] p. 231. For a more traditional definition, but requiring a dummy variable, see dfnul2 4245. (Contributed by NM, 17-Jun-1993.) Clarify that at this point, it is not established that it is a set. (Revised by BJ, 22-Sep-2022.)
∅ = (V ∖ V)
 
Theoremdfnul2 4245 Alternate definition of the empty set. Definition 5.14 of [TakeutiZaring] p. 20. (Contributed by NM, 26-Dec-1996.) Remove dependency on ax-10 2142, ax-11 2158, and ax-12 2175. (Revised by Steven Nguyen, 3-May-2023.)
∅ = {𝑥 ∣ ¬ 𝑥 = 𝑥}
 
Theoremdfnul3 4246 Alternate definition of the empty set. (Contributed by NM, 25-Mar-2004.)
∅ = {𝑥𝐴 ∣ ¬ 𝑥𝐴}
 
Theoremnoel 4247 The empty set has no elements. Theorem 6.14 of [Quine] p. 44. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Mario Carneiro, 1-Sep-2015.) Remove dependency on ax-10 2142, ax-11 2158, and ax-12 2175. (Revised by Steven Nguyen, 3-May-2023.)
¬ 𝐴 ∈ ∅
 
Theoremnel02 4248 The empty set has no elements. (Contributed by Peter Mazsa, 4-Jan-2018.)
(𝐴 = ∅ → ¬ 𝐵𝐴)
 
Theoremn0i 4249 If a class has elements, then it is not empty. (Contributed by NM, 31-Dec-1993.)
(𝐵𝐴 → ¬ 𝐴 = ∅)
 
Theoremne0i 4250 If a class has elements, then it is nonempty. (Contributed by NM, 31-Dec-1993.)
(𝐵𝐴𝐴 ≠ ∅)
 
Theoremne0d 4251 Deduction form of ne0i 4250. If a class has elements, then it is nonempty. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝐵𝐴)       (𝜑𝐴 ≠ ∅)
 
Theoremn0ii 4252 If a class has elements, then it is not empty. Inference associated with n0i 4249. (Contributed by BJ, 15-Jul-2021.)
𝐴𝐵        ¬ 𝐵 = ∅
 
Theoremne0ii 4253 If a class has elements, then it is nonempty. Inference associated with ne0i 4250. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
𝐴𝐵       𝐵 ≠ ∅
 
Theoremvn0 4254 The universal class is not equal to the empty set. (Contributed by NM, 11-Sep-2008.)
V ≠ ∅
 
Theoremeq0f 4255 A class is equal to the empty set if and only if it has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by BJ, 15-Jul-2021.)
𝑥𝐴       (𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
 
Theoremneq0f 4256 A class is not empty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of neq0 4259 requires only that 𝑥 not be free in, rather than not occur in, 𝐴. (Contributed by BJ, 15-Jul-2021.)
𝑥𝐴       𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
 
Theoremn0f 4257 A class is nonempty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. This version of n0 4260 requires only that 𝑥 not be free in, rather than not occur in, 𝐴. (Contributed by NM, 17-Oct-2003.)
𝑥𝐴       (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
 
Theoremeq0 4258* A class is equal to the empty set if and only if it has no elements. Theorem 2 of [Suppes] p. 22. (Contributed by NM, 29-Aug-1993.) Avoid ax-11 2158, ax-12 2175. (Revised by Gino Giotto and Steven Nguyen, 28-Jun-2024.)
(𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
 
Theoremneq0 4259* A class is not empty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 21-Jun-1993.) Avoid ax-11 2158, ax-12 2175. (Revised by Gino Giotto, 28-Jun-2024.)
𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
 
Theoremn0 4260* A class is nonempty if and only if it has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 29-Sep-2006.) Avoid ax-11 2158, ax-12 2175. (Revised by Gino Giotto, 28-Jun-2024.)
(𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
 
Theoremeq0OLD 4261* Obsolete version of eq0 4258 as of 28-Jun-2024. (Contributed by NM, 29-Aug-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 = ∅ ↔ ∀𝑥 ¬ 𝑥𝐴)
 
Theoremneq0OLD 4262* Obsolete version of neq0 4259 as of 28-Jun-2024. (Contributed by NM, 21-Jun-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐴 = ∅ ↔ ∃𝑥 𝑥𝐴)
 
Theoremn0OLD 4263* Obsolete version of n0 4260 as of 28-Jun-2024. (Contributed by NM, 29-Sep-2006.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
 
Theoremnel0 4264* From the general negation of membership in 𝐴, infer that 𝐴 is the empty set. (Contributed by BJ, 6-Oct-2018.)
¬ 𝑥𝐴       𝐴 = ∅
 
Theoremreximdva0 4265* Restricted existence deduced from nonempty class. (Contributed by NM, 1-Feb-2012.)
((𝜑𝑥𝐴) → 𝜓)       ((𝜑𝐴 ≠ ∅) → ∃𝑥𝐴 𝜓)
 
Theoremrspn0 4266* Specialization for restricted generalization with a nonempty class. (Contributed by Alexander van der Vekens, 6-Sep-2018.) Avoid ax-10 2142, ax-12 2175. (Revised by Gino Giotto, 28-Jun-2024.)
(𝐴 ≠ ∅ → (∀𝑥𝐴 𝜑𝜑))
 
Theoremrspn0OLD 4267* Obsolete version of rspn0 4266 as of 28-Jun-2024. (Contributed by Alexander van der Vekens, 6-Sep-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴 ≠ ∅ → (∀𝑥𝐴 𝜑𝜑))
 
Theoremn0rex 4268* There is an element in a nonempty class which is an element of the class. (Contributed by AV, 17-Dec-2020.)
(𝐴 ≠ ∅ → ∃𝑥𝐴 𝑥𝐴)
 
Theoremssn0rex 4269* There is an element in a class with a nonempty subclass which is an element of the subclass. (Contributed by AV, 17-Dec-2020.)
((𝐴𝐵𝐴 ≠ ∅) → ∃𝑥𝐵 𝑥𝐴)
 
Theoremn0moeu 4270* A case of equivalence of "at most one" and "only one". (Contributed by FL, 6-Dec-2010.)
(𝐴 ≠ ∅ → (∃*𝑥 𝑥𝐴 ↔ ∃!𝑥 𝑥𝐴))
 
Theoremrex0 4271 Vacuous restricted existential quantification is false. (Contributed by NM, 15-Oct-2003.)
¬ ∃𝑥 ∈ ∅ 𝜑
 
Theoremreu0 4272 Vacuous restricted uniqueness is always false. (Contributed by AV, 3-Apr-2023.)
¬ ∃!𝑥 ∈ ∅ 𝜑
 
Theoremrmo0 4273 Vacuous restricted at-most-one quantifier is always true. (Contributed by AV, 3-Apr-2023.)
∃*𝑥 ∈ ∅ 𝜑
 
Theorem0el 4274* Membership of the empty set in another class. (Contributed by NM, 29-Jun-2004.)
(∅ ∈ 𝐴 ↔ ∃𝑥𝐴𝑦 ¬ 𝑦𝑥)
 
Theoremn0el 4275* Negated membership of the empty set in another class. (Contributed by Rodolfo Medina, 25-Sep-2010.)
(¬ ∅ ∈ 𝐴 ↔ ∀𝑥𝐴𝑢 𝑢𝑥)
 
Theoremeqeuel 4276* A condition which implies the existence of a unique element of a class. (Contributed by AV, 4-Jan-2022.)
((𝐴 ≠ ∅ ∧ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦)) → ∃!𝑥 𝑥𝐴)
 
Theoremssdif0 4277 Subclass expressed in terms of difference. Exercise 7 of [TakeutiZaring] p. 22. (Contributed by NM, 29-Apr-1994.)
(𝐴𝐵 ↔ (𝐴𝐵) = ∅)
 
Theoremdifn0 4278 If the difference of two sets is not empty, then the sets are not equal. (Contributed by Thierry Arnoux, 28-Feb-2017.)
((𝐴𝐵) ≠ ∅ → 𝐴𝐵)
 
Theorempssdifn0 4279 A proper subclass has a nonempty difference. (Contributed by NM, 3-May-1994.)
((𝐴𝐵𝐴𝐵) → (𝐵𝐴) ≠ ∅)
 
Theorempssdif 4280 A proper subclass has a nonempty difference. (Contributed by Mario Carneiro, 27-Apr-2016.)
(𝐴𝐵 → (𝐵𝐴) ≠ ∅)
 
Theoremndisj 4281* Express that an intersection is not empty. (Contributed by RP, 16-Apr-2020.)
((𝐴𝐵) ≠ ∅ ↔ ∃𝑥(𝑥𝐴𝑥𝐵))
 
Theoremdifin0ss 4282 Difference, intersection, and subclass relationship. (Contributed by NM, 30-Apr-1994.) (Proof shortened by Wolf Lammen, 30-Sep-2014.)
(((𝐴𝐵) ∩ 𝐶) = ∅ → (𝐶𝐴𝐶𝐵))
 
Theoreminssdif0 4283 Intersection, subclass, and difference relationship. (Contributed by NM, 27-Oct-1996.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by Wolf Lammen, 30-Sep-2014.)
((𝐴𝐵) ⊆ 𝐶 ↔ (𝐴 ∩ (𝐵𝐶)) = ∅)
 
Theoremdifid 4284 The difference between a class and itself is the empty set. Proposition 5.15 of [TakeutiZaring] p. 20. Also Theorem 32 of [Suppes] p. 28. (Contributed by NM, 22-Apr-2004.)
(𝐴𝐴) = ∅
 
TheoremdifidALT 4285 Alternate proof of difid 4284. (Contributed by David Abernethy, 17-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝐴𝐴) = ∅
 
Theoremdif0 4286 The difference between a class and the empty set. Part of Exercise 4.4 of [Stoll] p. 16. (Contributed by NM, 17-Aug-2004.)
(𝐴 ∖ ∅) = 𝐴
 
Theoremab0 4287 The class of sets verifying a property is the empty class if and only if that property is a contradiction. See also abn0 4290 (from which it could be proved using as many essential proof steps but one fewer syntactic step, at the cost of depending on df-ne 2988). (Contributed by BJ, 19-Mar-2021.)
({𝑥𝜑} = ∅ ↔ ∀𝑥 ¬ 𝜑)
 
Theoremdfnf5 4288 Characterization of non-freeness in a formula in terms of its extension. (Contributed by BJ, 19-Mar-2021.)
(Ⅎ𝑥𝜑 ↔ ({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅))
 
Theoremab0orv 4289* The class abstraction defined by a formula not containing the abstraction variable is either the empty set or the universal class. (Contributed by Mario Carneiro, 29-Aug-2013.) (Revised by BJ, 22-Mar-2020.)
({𝑥𝜑} = V ∨ {𝑥𝜑} = ∅)
 
Theoremabn0 4290 Nonempty class abstraction. See also ab0 4287. (Contributed by NM, 26-Dec-1996.) (Proof shortened by Mario Carneiro, 11-Nov-2016.)
({𝑥𝜑} ≠ ∅ ↔ ∃𝑥𝜑)
 
Theoremrab0 4291 Any restricted class abstraction restricted to the empty set is empty. (Contributed by NM, 15-Oct-2003.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) (Proof shortened by JJ, 14-Jul-2021.)
{𝑥 ∈ ∅ ∣ 𝜑} = ∅
 
Theoremrabeq0 4292 Condition for a restricted class abstraction to be empty. (Contributed by Jeff Madsen, 7-Jun-2010.) (Revised by BJ, 16-Jul-2021.)
({𝑥𝐴𝜑} = ∅ ↔ ∀𝑥𝐴 ¬ 𝜑)
 
Theoremrabn0 4293 Nonempty restricted class abstraction. (Contributed by NM, 29-Aug-1999.) (Revised by BJ, 16-Jul-2021.)
({𝑥𝐴𝜑} ≠ ∅ ↔ ∃𝑥𝐴 𝜑)
 
Theoremrabxm 4294* Law of excluded middle, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
𝐴 = ({𝑥𝐴𝜑} ∪ {𝑥𝐴 ∣ ¬ 𝜑})
 
Theoremrabnc 4295* Law of noncontradiction, in terms of restricted class abstractions. (Contributed by Jeff Madsen, 20-Jun-2011.)
({𝑥𝐴𝜑} ∩ {𝑥𝐴 ∣ ¬ 𝜑}) = ∅
 
Theoremelneldisj 4296* The set of elements 𝑠 determining classes 𝐶 (which may depend on 𝑠) containing a special element and the set of elements 𝑠 determining classes 𝐶 not containing the special element are disjoint. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) (Revised by AV, 17-Dec-2021.)
𝐸 = {𝑠𝐴𝐵𝐶}    &   𝑁 = {𝑠𝐴𝐵𝐶}       (𝐸𝑁) = ∅
 
Theoremelnelun 4297* The union of the set of elements 𝑠 determining classes 𝐶 (which may depend on 𝑠) containing a special element and the set of elements 𝑠 determining classes 𝐶 not containing the special element yields the original set. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) (Revised by AV, 17-Dec-2021.)
𝐸 = {𝑠𝐴𝐵𝐶}    &   𝑁 = {𝑠𝐴𝐵𝐶}       (𝐸𝑁) = 𝐴
 
Theoremun0 4298 The union of a class with the empty set is itself. Theorem 24 of [Suppes] p. 27. (Contributed by NM, 15-Jul-1993.)
(𝐴 ∪ ∅) = 𝐴
 
Theoremin0 4299 The intersection of a class with the empty set is the empty set. Theorem 16 of [Suppes] p. 26. (Contributed by NM, 21-Jun-1993.)
(𝐴 ∩ ∅) = ∅
 
Theorem0un 4300 The union of the empty set with a class is itself. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(∅ ∪ 𝐴) = 𝐴
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45333
  Copyright terms: Public domain < Previous  Next >