![]() |
Metamath
Proof Explorer Theorem List (p. 43 of 481) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30640) |
![]() (30641-32163) |
![]() (32164-48040) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ineq2i 4201 | Equality inference for intersection of two classes. (Contributed by NM, 26-Dec-1993.) |
⊢ 𝐴 = 𝐵 ⇒ ⊢ (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵) | ||
Theorem | ineq12i 4202 | Equality inference for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Eric Schmidt, 26-Jan-2007.) |
⊢ 𝐴 = 𝐵 & ⊢ 𝐶 = 𝐷 ⇒ ⊢ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷) | ||
Theorem | ineq1d 4203 | Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) | ||
Theorem | ineq2d 4204 | Equality deduction for intersection of two classes. (Contributed by NM, 10-Apr-1994.) |
⊢ (𝜑 → 𝐴 = 𝐵) ⇒ ⊢ (𝜑 → (𝐶 ∩ 𝐴) = (𝐶 ∩ 𝐵)) | ||
Theorem | ineq12d 4205 | Equality deduction for intersection of two classes. (Contributed by NM, 24-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜑 → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | ||
Theorem | ineqan12d 4206 | Equality deduction for intersection of two classes. (Contributed by NM, 7-Feb-2007.) |
⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ (𝜓 → 𝐶 = 𝐷) ⇒ ⊢ ((𝜑 ∧ 𝜓) → (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐷)) | ||
Theorem | sseqin2 4207 | A relationship between subclass and intersection. Similar to Exercise 9 of [TakeutiZaring] p. 18. (Contributed by NM, 17-May-1994.) |
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐴) = 𝐴) | ||
Theorem | nfin 4208 | Bound-variable hypothesis builder for the intersection of classes. (Contributed by NM, 15-Sep-2003.) (Revised by Mario Carneiro, 14-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 ∩ 𝐵) | ||
Theorem | rabbi2dva 4209* | Deduction from a wff to a restricted class abstraction. (Contributed by NM, 14-Jan-2014.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐵 ↔ 𝜓)) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) = {𝑥 ∈ 𝐴 ∣ 𝜓}) | ||
Theorem | inidm 4210 | Idempotent law for intersection of classes. Theorem 15 of [Suppes] p. 26. (Contributed by NM, 5-Aug-1993.) |
⊢ (𝐴 ∩ 𝐴) = 𝐴 | ||
Theorem | inass 4211 | Associative law for intersection of classes. Exercise 9 of [TakeutiZaring] p. 17. (Contributed by NM, 3-May-1994.) |
⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) | ||
Theorem | in12 4212 | A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) |
⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐵 ∩ (𝐴 ∩ 𝐶)) | ||
Theorem | in32 4213 | A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ 𝐵) | ||
Theorem | in13 4214 | A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.) |
⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐶 ∩ (𝐵 ∩ 𝐴)) | ||
Theorem | in31 4215 | A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.) |
⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐶 ∩ 𝐵) ∩ 𝐴) | ||
Theorem | inrot 4216 | Rotate the intersection of 3 classes. (Contributed by NM, 27-Aug-2012.) |
⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐶 ∩ 𝐴) ∩ 𝐵) | ||
Theorem | in4 4217 | Rearrangement of intersection of 4 classes. (Contributed by NM, 21-Apr-2001.) |
⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐷)) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐷)) | ||
Theorem | inindi 4218 | Intersection distributes over itself. (Contributed by NM, 6-May-1994.) |
⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = ((𝐴 ∩ 𝐵) ∩ (𝐴 ∩ 𝐶)) | ||
Theorem | inindir 4219 | Intersection distributes over itself. (Contributed by NM, 17-Aug-2004.) |
⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐶)) | ||
Theorem | inss1 4220 | The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | ||
Theorem | inss2 4221 | The intersection of two classes is a subset of one of them. Part of Exercise 12 of [TakeutiZaring] p. 18. (Contributed by NM, 27-Apr-1994.) |
⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | ||
Theorem | ssin 4222 | Subclass of intersection. Theorem 2.8(vii) of [Monk1] p. 26. (Contributed by NM, 15-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ⊆ 𝐶) ↔ 𝐴 ⊆ (𝐵 ∩ 𝐶)) | ||
Theorem | ssini 4223 | An inference showing that a subclass of two classes is a subclass of their intersection. (Contributed by NM, 24-Nov-2003.) |
⊢ 𝐴 ⊆ 𝐵 & ⊢ 𝐴 ⊆ 𝐶 ⇒ ⊢ 𝐴 ⊆ (𝐵 ∩ 𝐶) | ||
Theorem | ssind 4224 | A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐴 ⊆ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ⊆ (𝐵 ∩ 𝐶)) | ||
Theorem | ssrin 4225 | Add right intersection to subclass relation. (Contributed by NM, 16-Aug-1994.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | ||
Theorem | sslin 4226 | Add left intersection to subclass relation. (Contributed by NM, 19-Oct-1999.) |
⊢ (𝐴 ⊆ 𝐵 → (𝐶 ∩ 𝐴) ⊆ (𝐶 ∩ 𝐵)) | ||
Theorem | ssrind 4227 | Add right intersection to subclass relation. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐶)) | ||
Theorem | ss2in 4228 | Intersection of subclasses. (Contributed by NM, 5-May-2000.) |
⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐶 ⊆ 𝐷) → (𝐴 ∩ 𝐶) ⊆ (𝐵 ∩ 𝐷)) | ||
Theorem | ssinss1 4229 | Intersection preserves subclass relationship. (Contributed by NM, 14-Sep-1999.) |
⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∩ 𝐵) ⊆ 𝐶) | ||
Theorem | inss 4230 | Inclusion of an intersection of two classes. (Contributed by NM, 30-Oct-2014.) |
⊢ ((𝐴 ⊆ 𝐶 ∨ 𝐵 ⊆ 𝐶) → (𝐴 ∩ 𝐵) ⊆ 𝐶) | ||
Theorem | rexin 4231 | Restricted existential quantification over intersection. (Contributed by Peter Mazsa, 17-Dec-2018.) |
⊢ (∃𝑥 ∈ (𝐴 ∩ 𝐵)𝜑 ↔ ∃𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 ∧ 𝜑)) | ||
Theorem | dfss7 4232* | Alternate definition of subclass relationship. (Contributed by AV, 1-Aug-2022.) |
⊢ (𝐵 ⊆ 𝐴 ↔ {𝑥 ∈ 𝐴 ∣ 𝑥 ∈ 𝐵} = 𝐵) | ||
Syntax | csymdif 4233 | Declare the syntax for symmetric difference. |
class (𝐴 △ 𝐵) | ||
Definition | df-symdif 4234 | Define the symmetric difference of two classes. Alternate definitions are dfsymdif2 4242, dfsymdif3 4288 and dfsymdif4 4240. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ (𝐴 △ 𝐵) = ((𝐴 ∖ 𝐵) ∪ (𝐵 ∖ 𝐴)) | ||
Theorem | symdifcom 4235 | Symmetric difference commutes. (Contributed by Scott Fenton, 24-Apr-2012.) |
⊢ (𝐴 △ 𝐵) = (𝐵 △ 𝐴) | ||
Theorem | symdifeq1 4236 | Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.) |
⊢ (𝐴 = 𝐵 → (𝐴 △ 𝐶) = (𝐵 △ 𝐶)) | ||
Theorem | symdifeq2 4237 | Equality theorem for symmetric difference. (Contributed by Scott Fenton, 24-Apr-2012.) |
⊢ (𝐴 = 𝐵 → (𝐶 △ 𝐴) = (𝐶 △ 𝐵)) | ||
Theorem | nfsymdif 4238 | Hypothesis builder for symmetric difference. (Contributed by Scott Fenton, 19-Feb-2013.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ Ⅎ𝑥(𝐴 △ 𝐵) | ||
Theorem | elsymdif 4239 | Membership in a symmetric difference. (Contributed by Scott Fenton, 31-Mar-2012.) |
⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ ¬ (𝐴 ∈ 𝐵 ↔ 𝐴 ∈ 𝐶)) | ||
Theorem | dfsymdif4 4240* | Alternate definition of the symmetric difference. (Contributed by NM, 17-Aug-2004.) (Revised by AV, 17-Aug-2022.) |
⊢ (𝐴 △ 𝐵) = {𝑥 ∣ ¬ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)} | ||
Theorem | elsymdifxor 4241 | Membership in a symmetric difference is an exclusive-or relationship. (Contributed by David A. Wheeler, 26-Apr-2020.) (Proof shortened by BJ, 13-Aug-2022.) |
⊢ (𝐴 ∈ (𝐵 △ 𝐶) ↔ (𝐴 ∈ 𝐵 ⊻ 𝐴 ∈ 𝐶)) | ||
Theorem | dfsymdif2 4242* | Alternate definition of the symmetric difference. (Contributed by BJ, 30-Apr-2020.) |
⊢ (𝐴 △ 𝐵) = {𝑥 ∣ (𝑥 ∈ 𝐴 ⊻ 𝑥 ∈ 𝐵)} | ||
Theorem | symdifass 4243 | Symmetric difference is associative. (Contributed by Scott Fenton, 24-Apr-2012.) (Proof shortened by BJ, 7-Sep-2022.) |
⊢ ((𝐴 △ 𝐵) △ 𝐶) = (𝐴 △ (𝐵 △ 𝐶)) | ||
Theorem | difsssymdif 4244 | The symmetric difference contains one of the differences. (Proposed by BJ, 18-Aug-2022.) (Contributed by AV, 19-Aug-2022.) |
⊢ (𝐴 ∖ 𝐵) ⊆ (𝐴 △ 𝐵) | ||
Theorem | difsymssdifssd 4245 | If the symmetric difference is contained in 𝐶, so is one of the differences. (Contributed by AV, 17-Aug-2022.) |
⊢ (𝜑 → (𝐴 △ 𝐵) ⊆ 𝐶) ⇒ ⊢ (𝜑 → (𝐴 ∖ 𝐵) ⊆ 𝐶) | ||
Theorem | unabs 4246 | Absorption law for union. (Contributed by NM, 16-Apr-2006.) |
⊢ (𝐴 ∪ (𝐴 ∩ 𝐵)) = 𝐴 | ||
Theorem | inabs 4247 | Absorption law for intersection. (Contributed by NM, 16-Apr-2006.) |
⊢ (𝐴 ∩ (𝐴 ∪ 𝐵)) = 𝐴 | ||
Theorem | nssinpss 4248 | Negation of subclass expressed in terms of intersection and proper subclass. (Contributed by NM, 30-Jun-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (¬ 𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ 𝐵) ⊊ 𝐴) | ||
Theorem | nsspssun 4249 | Negation of subclass expressed in terms of proper subclass and union. (Contributed by NM, 15-Sep-2004.) |
⊢ (¬ 𝐴 ⊆ 𝐵 ↔ 𝐵 ⊊ (𝐴 ∪ 𝐵)) | ||
Theorem | dfss4 4250 | Subclass defined in terms of class difference. See comments under dfun2 4251. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ⊆ 𝐵 ↔ (𝐵 ∖ (𝐵 ∖ 𝐴)) = 𝐴) | ||
Theorem | dfun2 4251 | An alternate definition of the union of two classes in terms of class difference, requiring no dummy variables. Along with dfin2 4252 and dfss4 4250 it shows we can express union, intersection, and subset directly in terms of the single "primitive" operation ∖ (class difference). (Contributed by NM, 10-Jun-2004.) |
⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∖ 𝐵)) | ||
Theorem | dfin2 4252 | An alternate definition of the intersection of two classes in terms of class difference, requiring no dummy variables. See comments under dfun2 4251. Another version is given by dfin4 4259. (Contributed by NM, 10-Jun-2004.) |
⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (V ∖ 𝐵)) | ||
Theorem | difin 4253 | Difference with intersection. Theorem 33 of [Suppes] p. 29. (Contributed by NM, 31-Mar-1998.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ∖ (𝐴 ∩ 𝐵)) = (𝐴 ∖ 𝐵) | ||
Theorem | ssdifim 4254 | Implication of a class difference with a subclass. (Contributed by AV, 3-Jan-2022.) |
⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 = (𝑉 ∖ 𝐴)) → 𝐴 = (𝑉 ∖ 𝐵)) | ||
Theorem | ssdifsym 4255 | Symmetric class differences for subclasses. (Contributed by AV, 3-Jan-2022.) |
⊢ ((𝐴 ⊆ 𝑉 ∧ 𝐵 ⊆ 𝑉) → (𝐵 = (𝑉 ∖ 𝐴) ↔ 𝐴 = (𝑉 ∖ 𝐵))) | ||
Theorem | dfss5 4256* | Alternate definition of subclass relationship: a class 𝐴 is a subclass of another class 𝐵 iff each element of 𝐴 is equal to an element of 𝐵. (Contributed by AV, 13-Nov-2020.) |
⊢ (𝐴 ⊆ 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑥 = 𝑦) | ||
Theorem | dfun3 4257 | Union defined in terms of intersection (De Morgan's law). Definition of union in [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
⊢ (𝐴 ∪ 𝐵) = (V ∖ ((V ∖ 𝐴) ∩ (V ∖ 𝐵))) | ||
Theorem | dfin3 4258 | Intersection defined in terms of union (De Morgan's law). Similar to Exercise 4.10(n) of [Mendelson] p. 231. (Contributed by NM, 8-Jan-2002.) |
⊢ (𝐴 ∩ 𝐵) = (V ∖ ((V ∖ 𝐴) ∪ (V ∖ 𝐵))) | ||
Theorem | dfin4 4259 | Alternate definition of the intersection of two classes. Exercise 4.10(q) of [Mendelson] p. 231. (Contributed by NM, 25-Nov-2003.) |
⊢ (𝐴 ∩ 𝐵) = (𝐴 ∖ (𝐴 ∖ 𝐵)) | ||
Theorem | invdif 4260 | Intersection with universal complement. Remark in [Stoll] p. 20. (Contributed by NM, 17-Aug-2004.) |
⊢ (𝐴 ∩ (V ∖ 𝐵)) = (𝐴 ∖ 𝐵) | ||
Theorem | indif 4261 | Intersection with class difference. Theorem 34 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
⊢ (𝐴 ∩ (𝐴 ∖ 𝐵)) = (𝐴 ∖ 𝐵) | ||
Theorem | indif2 4262 | Bring an intersection in and out of a class difference. (Contributed by Jeff Hankins, 15-Jul-2009.) |
⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ 𝐶) | ||
Theorem | indif1 4263 | Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ ((𝐴 ∖ 𝐶) ∩ 𝐵) = ((𝐴 ∩ 𝐵) ∖ 𝐶) | ||
Theorem | indifcom 4264 | Commutation law for intersection and difference. (Contributed by Scott Fenton, 18-Feb-2013.) |
⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = (𝐵 ∩ (𝐴 ∖ 𝐶)) | ||
Theorem | indi 4265 | Distributive law for intersection over union. Exercise 10 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ∩ (𝐵 ∪ 𝐶)) = ((𝐴 ∩ 𝐵) ∪ (𝐴 ∩ 𝐶)) | ||
Theorem | undi 4266 | Distributive law for union over intersection. Exercise 11 of [TakeutiZaring] p. 17. (Contributed by NM, 30-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ (𝐴 ∪ (𝐵 ∩ 𝐶)) = ((𝐴 ∪ 𝐵) ∩ (𝐴 ∪ 𝐶)) | ||
Theorem | indir 4267 | Distributive law for intersection over union. Theorem 28 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
⊢ ((𝐴 ∪ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)) | ||
Theorem | undir 4268 | Distributive law for union over intersection. Theorem 29 of [Suppes] p. 27. (Contributed by NM, 30-Sep-2002.) |
⊢ ((𝐴 ∩ 𝐵) ∪ 𝐶) = ((𝐴 ∪ 𝐶) ∩ (𝐵 ∪ 𝐶)) | ||
Theorem | unineq 4269 | Infer equality from equalities of union and intersection. Exercise 20 of [Enderton] p. 32 and its converse. (Contributed by NM, 10-Aug-2004.) |
⊢ (((𝐴 ∪ 𝐶) = (𝐵 ∪ 𝐶) ∧ (𝐴 ∩ 𝐶) = (𝐵 ∩ 𝐶)) ↔ 𝐴 = 𝐵) | ||
Theorem | uneqin 4270 | Equality of union and intersection implies equality of their arguments. (Contributed by NM, 16-Apr-2006.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ((𝐴 ∪ 𝐵) = (𝐴 ∩ 𝐵) ↔ 𝐴 = 𝐵) | ||
Theorem | difundi 4271 | Distributive law for class difference. Theorem 39 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∩ (𝐴 ∖ 𝐶)) | ||
Theorem | difundir 4272 | Distributive law for class difference. (Contributed by NM, 17-Aug-2004.) |
⊢ ((𝐴 ∪ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∪ (𝐵 ∖ 𝐶)) | ||
Theorem | difindi 4273 | Distributive law for class difference. Theorem 40 of [Suppes] p. 29. (Contributed by NM, 17-Aug-2004.) |
⊢ (𝐴 ∖ (𝐵 ∩ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∖ 𝐶)) | ||
Theorem | difindir 4274 | Distributive law for class difference. (Contributed by NM, 17-Aug-2004.) |
⊢ ((𝐴 ∩ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∩ (𝐵 ∖ 𝐶)) | ||
Theorem | indifdi 4275 | Distribute intersection over difference. (Contributed by BTernaryTau, 14-Aug-2024.) |
⊢ (𝐴 ∩ (𝐵 ∖ 𝐶)) = ((𝐴 ∩ 𝐵) ∖ (𝐴 ∩ 𝐶)) | ||
Theorem | indifdir 4276 | Distribute intersection over difference. (Contributed by Scott Fenton, 14-Apr-2011.) (Revised by BTernaryTau, 14-Aug-2024.) |
⊢ ((𝐴 ∖ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∖ (𝐵 ∩ 𝐶)) | ||
Theorem | indifdirOLD 4277 | Obsolete version of indifdir 4276 as of 14-Aug-2024. (Contributed by Scott Fenton, 14-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∖ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∖ (𝐵 ∩ 𝐶)) | ||
Theorem | difdif2 4278 | Class difference by a class difference. (Contributed by Thierry Arnoux, 18-Dec-2017.) |
⊢ (𝐴 ∖ (𝐵 ∖ 𝐶)) = ((𝐴 ∖ 𝐵) ∪ (𝐴 ∩ 𝐶)) | ||
Theorem | undm 4279 | De Morgan's law for union. Theorem 5.2(13) of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.) |
⊢ (V ∖ (𝐴 ∪ 𝐵)) = ((V ∖ 𝐴) ∩ (V ∖ 𝐵)) | ||
Theorem | indm 4280 | De Morgan's law for intersection. Theorem 5.2(13') of [Stoll] p. 19. (Contributed by NM, 18-Aug-2004.) |
⊢ (V ∖ (𝐴 ∩ 𝐵)) = ((V ∖ 𝐴) ∪ (V ∖ 𝐵)) | ||
Theorem | difun1 4281 | A relationship involving double difference and union. (Contributed by NM, 29-Aug-2004.) |
⊢ (𝐴 ∖ (𝐵 ∪ 𝐶)) = ((𝐴 ∖ 𝐵) ∖ 𝐶) | ||
Theorem | undif3 4282 | An equality involving class union and class difference. The first equality of Exercise 13 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 17-Apr-2012.) (Proof shortened by JJ, 13-Jul-2021.) |
⊢ (𝐴 ∪ (𝐵 ∖ 𝐶)) = ((𝐴 ∪ 𝐵) ∖ (𝐶 ∖ 𝐴)) | ||
Theorem | difin2 4283 | Represent a class difference as an intersection with a larger difference. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝐴 ⊆ 𝐶 → (𝐴 ∖ 𝐵) = ((𝐶 ∖ 𝐵) ∩ 𝐴)) | ||
Theorem | dif32 4284 | Swap second and third argument of double difference. (Contributed by NM, 18-Aug-2004.) |
⊢ ((𝐴 ∖ 𝐵) ∖ 𝐶) = ((𝐴 ∖ 𝐶) ∖ 𝐵) | ||
Theorem | difabs 4285 | Absorption-like law for class difference: you can remove a class only once. (Contributed by FL, 2-Aug-2009.) |
⊢ ((𝐴 ∖ 𝐵) ∖ 𝐵) = (𝐴 ∖ 𝐵) | ||
Theorem | sscon34b 4286 | Relative complementation reverses inclusion of subclasses. Relativized version of complss 4138. (Contributed by RP, 3-Jun-2021.) |
⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 ⊆ 𝐵 ↔ (𝐶 ∖ 𝐵) ⊆ (𝐶 ∖ 𝐴))) | ||
Theorem | rcompleq 4287 | Two subclasses are equal if and only if their relative complements are equal. Relativized version of compleq 4139. (Contributed by RP, 10-Jun-2021.) |
⊢ ((𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶) → (𝐴 = 𝐵 ↔ (𝐶 ∖ 𝐴) = (𝐶 ∖ 𝐵))) | ||
Theorem | dfsymdif3 4288 | Alternate definition of the symmetric difference, given in Example 4.1 of [Stoll] p. 262 (the original definition corresponds to [Stoll] p. 13). (Contributed by NM, 17-Aug-2004.) (Revised by BJ, 30-Apr-2020.) |
⊢ (𝐴 △ 𝐵) = ((𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵)) | ||
Theorem | unabw 4289* | Union of two class abstractions. Version of unab 4290 using implicit substitution, which does not require ax-8 2100, ax-10 2129, ax-12 2163. (Contributed by Gino Giotto, 15-Oct-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) ⇒ ⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑦 ∣ (𝜒 ∨ 𝜃)} | ||
Theorem | unab 4290 | Union of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ({𝑥 ∣ 𝜑} ∪ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∨ 𝜓)} | ||
Theorem | inab 4291 | Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ({𝑥 ∣ 𝜑} ∩ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ 𝜓)} | ||
Theorem | difab 4292 | Difference of two class abstractions. (Contributed by NM, 23-Oct-2004.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
⊢ ({𝑥 ∣ 𝜑} ∖ {𝑥 ∣ 𝜓}) = {𝑥 ∣ (𝜑 ∧ ¬ 𝜓)} | ||
Theorem | abanssl 4293 | A class abstraction with a conjunction is a subset of the class abstraction with the left conjunct only. (Contributed by AV, 7-Aug-2024.) (Proof shortened by SN, 22-Aug-2024.) |
⊢ {𝑓 ∣ (𝜑 ∧ 𝜓)} ⊆ {𝑓 ∣ 𝜑} | ||
Theorem | abanssr 4294 | A class abstraction with a conjunction is a subset of the class abstraction with the right conjunct only. (Contributed by AV, 7-Aug-2024.) (Proof shortened by SN, 22-Aug-2024.) |
⊢ {𝑓 ∣ (𝜑 ∧ 𝜓)} ⊆ {𝑓 ∣ 𝜓} | ||
Theorem | notabw 4295* | A class abstraction defined by a negation. Version of notab 4296 using implicit substitution, which does not require ax-10 2129, ax-12 2163. (Contributed by Gino Giotto, 15-Oct-2024.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑦 ∣ 𝜓}) | ||
Theorem | notab 4296 | A class abstraction defined by a negation. (Contributed by FL, 18-Sep-2010.) |
⊢ {𝑥 ∣ ¬ 𝜑} = (V ∖ {𝑥 ∣ 𝜑}) | ||
Theorem | unrab 4297 | Union of two restricted class abstractions. (Contributed by NM, 25-Mar-2004.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∪ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∨ 𝜓)} | ||
Theorem | inrab 4298 | Intersection of two restricted class abstractions. (Contributed by NM, 1-Sep-2006.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ 𝜓)} | ||
Theorem | inrab2 4299* | Intersection with a restricted class abstraction. (Contributed by NM, 19-Nov-2007.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∩ 𝐵) = {𝑥 ∈ (𝐴 ∩ 𝐵) ∣ 𝜑} | ||
Theorem | difrab 4300 | Difference of two restricted class abstractions. (Contributed by NM, 23-Oct-2004.) |
⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ∖ {𝑥 ∈ 𝐴 ∣ 𝜓}) = {𝑥 ∈ 𝐴 ∣ (𝜑 ∧ ¬ 𝜓)} |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |