| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnunres2 | Structured version Visualization version GIF version | ||
| Description: Restriction of a disjoint union to the domain of the second function. (Contributed by Thierry Arnoux, 12-Oct-2023.) |
| Ref | Expression |
|---|---|
| fnunres2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ 𝐵) = 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uncom 4133 | . . 3 ⊢ (𝐹 ∪ 𝐺) = (𝐺 ∪ 𝐹) | |
| 2 | 1 | reseq1i 5962 | . 2 ⊢ ((𝐹 ∪ 𝐺) ↾ 𝐵) = ((𝐺 ∪ 𝐹) ↾ 𝐵) |
| 3 | ineqcom 4185 | . . . 4 ⊢ ((𝐴 ∩ 𝐵) = ∅ ↔ (𝐵 ∩ 𝐴) = ∅) | |
| 4 | fnunres1 6650 | . . . 4 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐹 Fn 𝐴 ∧ (𝐵 ∩ 𝐴) = ∅) → ((𝐺 ∪ 𝐹) ↾ 𝐵) = 𝐺) | |
| 5 | 3, 4 | syl3an3b 1407 | . . 3 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐹 Fn 𝐴 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐺 ∪ 𝐹) ↾ 𝐵) = 𝐺) |
| 6 | 5 | 3com12 1123 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐺 ∪ 𝐹) ↾ 𝐵) = 𝐺) |
| 7 | 2, 6 | eqtrid 2782 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ 𝐵) = 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∪ cun 3924 ∩ cin 3925 ∅c0 4308 ↾ cres 5656 Fn wfn 6526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-dm 5664 df-res 5666 df-fun 6533 df-fn 6534 |
| This theorem is referenced by: tocycfvres1 33121 cycpmconjslem2 33166 dvun 42402 evlselvlem 42609 evlselv 42610 |
| Copyright terms: Public domain | W3C validator |