MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnunres2 Structured version   Visualization version   GIF version

Theorem fnunres2 6594
Description: Restriction of a disjoint union to the domain of the second function. (Contributed by Thierry Arnoux, 12-Oct-2023.)
Assertion
Ref Expression
fnunres2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ 𝐵) = 𝐺)

Proof of Theorem fnunres2
StepHypRef Expression
1 uncom 4105 . . 3 (𝐹𝐺) = (𝐺𝐹)
21reseq1i 5923 . 2 ((𝐹𝐺) ↾ 𝐵) = ((𝐺𝐹) ↾ 𝐵)
3 ineqcom 4157 . . . 4 ((𝐴𝐵) = ∅ ↔ (𝐵𝐴) = ∅)
4 fnunres1 6593 . . . 4 ((𝐺 Fn 𝐵𝐹 Fn 𝐴 ∧ (𝐵𝐴) = ∅) → ((𝐺𝐹) ↾ 𝐵) = 𝐺)
53, 4syl3an3b 1407 . . 3 ((𝐺 Fn 𝐵𝐹 Fn 𝐴 ∧ (𝐴𝐵) = ∅) → ((𝐺𝐹) ↾ 𝐵) = 𝐺)
653com12 1123 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐺𝐹) ↾ 𝐵) = 𝐺)
72, 6eqtrid 2778 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ 𝐵) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  cun 3895  cin 3896  c0 4280  cres 5616   Fn wfn 6476
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-xp 5620  df-rel 5621  df-dm 5624  df-res 5626  df-fun 6483  df-fn 6484
This theorem is referenced by:  tocycfvres1  33079  cycpmconjslem2  33124  dvun  42400  evlselvlem  42627  evlselv  42628
  Copyright terms: Public domain W3C validator