Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fnunres2 | Structured version Visualization version GIF version |
Description: Restriction of a disjoint union to the domain of the second function. (Contributed by Thierry Arnoux, 12-Oct-2023.) |
Ref | Expression |
---|---|
fnunres2 | ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ 𝐵) = 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uncom 4087 | . . 3 ⊢ (𝐹 ∪ 𝐺) = (𝐺 ∪ 𝐹) | |
2 | 1 | reseq1i 5887 | . 2 ⊢ ((𝐹 ∪ 𝐺) ↾ 𝐵) = ((𝐺 ∪ 𝐹) ↾ 𝐵) |
3 | simp2 1136 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐺 Fn 𝐵) | |
4 | simp1 1135 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → 𝐹 Fn 𝐴) | |
5 | incom 4135 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = (𝐵 ∩ 𝐴) | |
6 | simp3 1137 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐴 ∩ 𝐵) = ∅) | |
7 | 5, 6 | eqtr3id 2792 | . . 3 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐵 ∩ 𝐴) = ∅) |
8 | fnunres1 30945 | . . 3 ⊢ ((𝐺 Fn 𝐵 ∧ 𝐹 Fn 𝐴 ∧ (𝐵 ∩ 𝐴) = ∅) → ((𝐺 ∪ 𝐹) ↾ 𝐵) = 𝐺) | |
9 | 3, 4, 7, 8 | syl3anc 1370 | . 2 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐺 ∪ 𝐹) ↾ 𝐵) = 𝐺) |
10 | 2, 9 | eqtrid 2790 | 1 ⊢ ((𝐹 Fn 𝐴 ∧ 𝐺 Fn 𝐵 ∧ (𝐴 ∩ 𝐵) = ∅) → ((𝐹 ∪ 𝐺) ↾ 𝐵) = 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∪ cun 3885 ∩ cin 3886 ∅c0 4256 ↾ cres 5591 Fn wfn 6428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-dm 5599 df-res 5601 df-fun 6435 df-fn 6436 |
This theorem is referenced by: tocycfvres1 31377 cycpmconjslem2 31422 |
Copyright terms: Public domain | W3C validator |