MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnunres2 Structured version   Visualization version   GIF version

Theorem fnunres2 6613
Description: Restriction of a disjoint union to the domain of the second function. (Contributed by Thierry Arnoux, 12-Oct-2023.)
Assertion
Ref Expression
fnunres2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ 𝐵) = 𝐺)

Proof of Theorem fnunres2
StepHypRef Expression
1 uncom 4117 . . 3 (𝐹𝐺) = (𝐺𝐹)
21reseq1i 5935 . 2 ((𝐹𝐺) ↾ 𝐵) = ((𝐺𝐹) ↾ 𝐵)
3 ineqcom 4169 . . . 4 ((𝐴𝐵) = ∅ ↔ (𝐵𝐴) = ∅)
4 fnunres1 6612 . . . 4 ((𝐺 Fn 𝐵𝐹 Fn 𝐴 ∧ (𝐵𝐴) = ∅) → ((𝐺𝐹) ↾ 𝐵) = 𝐺)
53, 4syl3an3b 1407 . . 3 ((𝐺 Fn 𝐵𝐹 Fn 𝐴 ∧ (𝐴𝐵) = ∅) → ((𝐺𝐹) ↾ 𝐵) = 𝐺)
653com12 1123 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐺𝐹) ↾ 𝐵) = 𝐺)
72, 6eqtrid 2776 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ 𝐵) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  cun 3909  cin 3910  c0 4292  cres 5633   Fn wfn 6494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-dm 5641  df-res 5643  df-fun 6501  df-fn 6502
This theorem is referenced by:  tocycfvres1  33040  cycpmconjslem2  33085  dvun  42320  evlselvlem  42547  evlselv  42548
  Copyright terms: Public domain W3C validator