MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fnunres2 Structured version   Visualization version   GIF version

Theorem fnunres2 6692
Description: Restriction of a disjoint union to the domain of the second function. (Contributed by Thierry Arnoux, 12-Oct-2023.)
Assertion
Ref Expression
fnunres2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ 𝐵) = 𝐺)

Proof of Theorem fnunres2
StepHypRef Expression
1 uncom 4181 . . 3 (𝐹𝐺) = (𝐺𝐹)
21reseq1i 6005 . 2 ((𝐹𝐺) ↾ 𝐵) = ((𝐺𝐹) ↾ 𝐵)
3 ineqcom 4231 . . . 4 ((𝐴𝐵) = ∅ ↔ (𝐵𝐴) = ∅)
4 fnunres1 6691 . . . 4 ((𝐺 Fn 𝐵𝐹 Fn 𝐴 ∧ (𝐵𝐴) = ∅) → ((𝐺𝐹) ↾ 𝐵) = 𝐺)
53, 4syl3an3b 1405 . . 3 ((𝐺 Fn 𝐵𝐹 Fn 𝐴 ∧ (𝐴𝐵) = ∅) → ((𝐺𝐹) ↾ 𝐵) = 𝐺)
653com12 1123 . 2 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐺𝐹) ↾ 𝐵) = 𝐺)
72, 6eqtrid 2792 1 ((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐴𝐵) = ∅) → ((𝐹𝐺) ↾ 𝐵) = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  cun 3974  cin 3975  c0 4352  cres 5702   Fn wfn 6568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-dm 5710  df-res 5712  df-fun 6575  df-fn 6576
This theorem is referenced by:  tocycfvres1  33103  cycpmconjslem2  33148  evlselvlem  42541  evlselv  42542
  Copyright terms: Public domain W3C validator