MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ineqcomi Structured version   Visualization version   GIF version

Theorem ineqcomi 4198
Description: Two ways of expressing that two classes have a given intersection. Inference form of ineqcom 4197. Disjointness inference when 𝐶 = ∅. (Contributed by Peter Mazsa, 26-Mar-2017.) (Proof shortened by SN, 20-Sep-2024.)
Hypothesis
Ref Expression
ineqcomi.1 (𝐴𝐵) = 𝐶
Assertion
Ref Expression
ineqcomi (𝐵𝐴) = 𝐶

Proof of Theorem ineqcomi
StepHypRef Expression
1 incom 4196 . 2 (𝐵𝐴) = (𝐴𝐵)
2 ineqcomi.1 . 2 (𝐴𝐵) = 𝐶
31, 2eqtri 2754 1 (𝐵𝐴) = 𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  cin 3942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-ext 2697
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2704  df-cleq 2718  df-rab 3427  df-in 3950
This theorem is referenced by:  cnvimainrn  7062  cnfldfunALT  21255  cnfldfunALTOLD  21268  inres2  37625
  Copyright terms: Public domain W3C validator