Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ineqcomi | Structured version Visualization version GIF version |
Description: Disjointness inference (when 𝐶 = ∅), inference form of ineqcom 35929. (Contributed by Peter Mazsa, 26-Mar-2017.) |
Ref | Expression |
---|---|
ineqcomi.1 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
Ref | Expression |
---|---|
ineqcomi | ⊢ (𝐵 ∩ 𝐴) = 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ineqcomi.1 | . 2 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
2 | ineqcom 35929 | . 2 ⊢ ((𝐴 ∩ 𝐵) = 𝐶 ↔ (𝐵 ∩ 𝐴) = 𝐶) | |
3 | 1, 2 | mpbi 233 | 1 ⊢ (𝐵 ∩ 𝐴) = 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3853 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-tru 1542 df-ex 1783 df-sb 2071 df-clab 2737 df-cleq 2751 df-rab 3077 df-in 3861 |
This theorem is referenced by: inres2 35931 |
Copyright terms: Public domain | W3C validator |