MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ineqcomi Structured version   Visualization version   GIF version

Theorem ineqcomi 4134
Description: Two ways of expressing that two classes have a given intersection. Inference form of ineqcom 4133. Disjointness inference when 𝐶 = ∅. (Contributed by Peter Mazsa, 26-Mar-2017.) (Proof shortened by SN, 20-Sep-2024.)
Hypothesis
Ref Expression
ineqcomi.1 (𝐴𝐵) = 𝐶
Assertion
Ref Expression
ineqcomi (𝐵𝐴) = 𝐶

Proof of Theorem ineqcomi
StepHypRef Expression
1 incom 4131 . 2 (𝐵𝐴) = (𝐴𝐵)
2 ineqcomi.1 . 2 (𝐴𝐵) = 𝐶
31, 2eqtri 2766 1 (𝐵𝐴) = 𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cin 3882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-rab 3072  df-in 3890
This theorem is referenced by:  cnvimainrn  6926  inres2  36311
  Copyright terms: Public domain W3C validator