MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ineqcomi Structured version   Visualization version   GIF version

Theorem ineqcomi 4232
Description: Two ways of expressing that two classes have a given intersection. Inference form of ineqcom 4231. Disjointness inference when 𝐶 = ∅. (Contributed by Peter Mazsa, 26-Mar-2017.) (Proof shortened by SN, 20-Sep-2024.)
Hypothesis
Ref Expression
ineqcomi.1 (𝐴𝐵) = 𝐶
Assertion
Ref Expression
ineqcomi (𝐵𝐴) = 𝐶

Proof of Theorem ineqcomi
StepHypRef Expression
1 incom 4230 . 2 (𝐵𝐴) = (𝐴𝐵)
2 ineqcomi.1 . 2 (𝐴𝐵) = 𝐶
31, 2eqtri 2768 1 (𝐵𝐴) = 𝐶
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cin 3975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-rab 3444  df-in 3983
This theorem is referenced by:  cnvimainrn  7102  cnfldfunALT  21404  cnfldfunALTOLD  21417  psdmul  22195  inres2  38203  isubgr0uhgr  47745
  Copyright terms: Public domain W3C validator