MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  inrot Structured version   Visualization version   GIF version

Theorem inrot 4198
Description: Rotate the intersection of 3 classes. (Contributed by NM, 27-Aug-2012.)
Assertion
Ref Expression
inrot ((𝐴𝐵) ∩ 𝐶) = ((𝐶𝐴) ∩ 𝐵)

Proof of Theorem inrot
StepHypRef Expression
1 in31 4197 . 2 ((𝐴𝐵) ∩ 𝐶) = ((𝐶𝐵) ∩ 𝐴)
2 in32 4195 . 2 ((𝐶𝐵) ∩ 𝐴) = ((𝐶𝐴) ∩ 𝐵)
31, 2eqtri 2753 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐶𝐴) ∩ 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cin 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-in 3923
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator