| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > inrot | Structured version Visualization version GIF version | ||
| Description: Rotate the intersection of 3 classes. (Contributed by NM, 27-Aug-2012.) |
| Ref | Expression |
|---|---|
| inrot | ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐶 ∩ 𝐴) ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | in31 4212 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐶 ∩ 𝐵) ∩ 𝐴) | |
| 2 | in32 4210 | . 2 ⊢ ((𝐶 ∩ 𝐵) ∩ 𝐴) = ((𝐶 ∩ 𝐴) ∩ 𝐵) | |
| 3 | 1, 2 | eqtri 2757 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐶 ∩ 𝐴) ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3420 df-v 3465 df-in 3938 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |