Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > inrot | Structured version Visualization version GIF version |
Description: Rotate the intersection of 3 classes. (Contributed by NM, 27-Aug-2012.) |
Ref | Expression |
---|---|
inrot | ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐶 ∩ 𝐴) ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in31 4154 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐶 ∩ 𝐵) ∩ 𝐴) | |
2 | in32 4152 | . 2 ⊢ ((𝐶 ∩ 𝐵) ∩ 𝐴) = ((𝐶 ∩ 𝐴) ∩ 𝐵) | |
3 | 1, 2 | eqtri 2766 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐶 ∩ 𝐴) ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |