MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  in31 Structured version   Visualization version   GIF version

Theorem in31 4157
Description: A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.)
Assertion
Ref Expression
in31 ((𝐴𝐵) ∩ 𝐶) = ((𝐶𝐵) ∩ 𝐴)

Proof of Theorem in31
StepHypRef Expression
1 in12 4154 . 2 (𝐶 ∩ (𝐴𝐵)) = (𝐴 ∩ (𝐶𝐵))
2 incom 4135 . 2 ((𝐴𝐵) ∩ 𝐶) = (𝐶 ∩ (𝐴𝐵))
3 incom 4135 . 2 ((𝐶𝐵) ∩ 𝐴) = (𝐴 ∩ (𝐶𝐵))
41, 2, 33eqtr4i 2776 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐶𝐵) ∩ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cin 3886
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-in 3894
This theorem is referenced by:  inrot  4158
  Copyright terms: Public domain W3C validator