MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  in31 Structured version   Visualization version   GIF version

Theorem in31 4195
Description: A rearrangement of intersection. (Contributed by NM, 27-Aug-2012.)
Assertion
Ref Expression
in31 ((𝐴𝐵) ∩ 𝐶) = ((𝐶𝐵) ∩ 𝐴)

Proof of Theorem in31
StepHypRef Expression
1 in12 4192 . 2 (𝐶 ∩ (𝐴𝐵)) = (𝐴 ∩ (𝐶𝐵))
2 incom 4172 . 2 ((𝐴𝐵) ∩ 𝐶) = (𝐶 ∩ (𝐴𝐵))
3 incom 4172 . 2 ((𝐶𝐵) ∩ 𝐴) = (𝐴 ∩ (𝐶𝐵))
41, 2, 33eqtr4i 2762 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐶𝐵) ∩ 𝐴)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cin 3913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-in 3921
This theorem is referenced by:  inrot  4196
  Copyright terms: Public domain W3C validator