MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  in4 Structured version   Visualization version   GIF version

Theorem in4 4200
Description: Rearrangement of intersection of 4 classes. (Contributed by NM, 21-Apr-2001.)
Assertion
Ref Expression
in4 ((𝐴𝐵) ∩ (𝐶𝐷)) = ((𝐴𝐶) ∩ (𝐵𝐷))

Proof of Theorem in4
StepHypRef Expression
1 in12 4195 . . 3 (𝐵 ∩ (𝐶𝐷)) = (𝐶 ∩ (𝐵𝐷))
21ineq2i 4183 . 2 (𝐴 ∩ (𝐵 ∩ (𝐶𝐷))) = (𝐴 ∩ (𝐶 ∩ (𝐵𝐷)))
3 inass 4194 . 2 ((𝐴𝐵) ∩ (𝐶𝐷)) = (𝐴 ∩ (𝐵 ∩ (𝐶𝐷)))
4 inass 4194 . 2 ((𝐴𝐶) ∩ (𝐵𝐷)) = (𝐴 ∩ (𝐶 ∩ (𝐵𝐷)))
52, 3, 43eqtr4i 2763 1 ((𝐴𝐵) ∩ (𝐶𝐷)) = ((𝐴𝐶) ∩ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cin 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-in 3924
This theorem is referenced by:  inindi  4201  inindir  4202  fh2  31555  disjxpin  32524
  Copyright terms: Public domain W3C validator