![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > in4 | Structured version Visualization version GIF version |
Description: Rearrangement of intersection of 4 classes. (Contributed by NM, 21-Apr-2001.) |
Ref | Expression |
---|---|
in4 | ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐷)) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in12 4049 | . . 3 ⊢ (𝐵 ∩ (𝐶 ∩ 𝐷)) = (𝐶 ∩ (𝐵 ∩ 𝐷)) | |
2 | 1 | ineq2i 4038 | . 2 ⊢ (𝐴 ∩ (𝐵 ∩ (𝐶 ∩ 𝐷))) = (𝐴 ∩ (𝐶 ∩ (𝐵 ∩ 𝐷))) |
3 | inass 4048 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐷)) = (𝐴 ∩ (𝐵 ∩ (𝐶 ∩ 𝐷))) | |
4 | inass 4048 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐷)) = (𝐴 ∩ (𝐶 ∩ (𝐵 ∩ 𝐷))) | |
5 | 2, 3, 4 | 3eqtr4i 2859 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐷)) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1658 ∩ cin 3797 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-v 3416 df-in 3805 |
This theorem is referenced by: inindi 4055 inindir 4056 fh2 29033 disjxpin 29948 |
Copyright terms: Public domain | W3C validator |