![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > in4 | Structured version Visualization version GIF version |
Description: Rearrangement of intersection of 4 classes. (Contributed by NM, 21-Apr-2001.) |
Ref | Expression |
---|---|
in4 | ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐷)) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | in12 4212 | . . 3 ⊢ (𝐵 ∩ (𝐶 ∩ 𝐷)) = (𝐶 ∩ (𝐵 ∩ 𝐷)) | |
2 | 1 | ineq2i 4201 | . 2 ⊢ (𝐴 ∩ (𝐵 ∩ (𝐶 ∩ 𝐷))) = (𝐴 ∩ (𝐶 ∩ (𝐵 ∩ 𝐷))) |
3 | inass 4211 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐷)) = (𝐴 ∩ (𝐵 ∩ (𝐶 ∩ 𝐷))) | |
4 | inass 4211 | . 2 ⊢ ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐷)) = (𝐴 ∩ (𝐶 ∩ (𝐵 ∩ 𝐷))) | |
5 | 2, 3, 4 | 3eqtr4i 2762 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ (𝐶 ∩ 𝐷)) = ((𝐴 ∩ 𝐶) ∩ (𝐵 ∩ 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∩ cin 3939 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 df-v 3468 df-in 3947 |
This theorem is referenced by: inindi 4218 inindir 4219 fh2 31341 disjxpin 32288 |
Copyright terms: Public domain | W3C validator |