MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  in4 Structured version   Visualization version   GIF version

Theorem in4 4186
Description: Rearrangement of intersection of 4 classes. (Contributed by NM, 21-Apr-2001.)
Assertion
Ref Expression
in4 ((𝐴𝐵) ∩ (𝐶𝐷)) = ((𝐴𝐶) ∩ (𝐵𝐷))

Proof of Theorem in4
StepHypRef Expression
1 in12 4181 . . 3 (𝐵 ∩ (𝐶𝐷)) = (𝐶 ∩ (𝐵𝐷))
21ineq2i 4170 . 2 (𝐴 ∩ (𝐵 ∩ (𝐶𝐷))) = (𝐴 ∩ (𝐶 ∩ (𝐵𝐷)))
3 inass 4180 . 2 ((𝐴𝐵) ∩ (𝐶𝐷)) = (𝐴 ∩ (𝐵 ∩ (𝐶𝐷)))
4 inass 4180 . 2 ((𝐴𝐶) ∩ (𝐵𝐷)) = (𝐴 ∩ (𝐶 ∩ (𝐵𝐷)))
52, 3, 43eqtr4i 2857 1 ((𝐴𝐵) ∩ (𝐶𝐷)) = ((𝐴𝐶) ∩ (𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  cin 3918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-ext 2796
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1541  df-ex 1782  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-rab 3142  df-v 3482  df-in 3926
This theorem is referenced by:  inindi  4187  inindir  4188  fh2  29398  disjxpin  30342
  Copyright terms: Public domain W3C validator