MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  in32 Structured version   Visualization version   GIF version

Theorem in32 4196
Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
in32 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∩ 𝐵)

Proof of Theorem in32
StepHypRef Expression
1 inass 4194 . 2 ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))
2 in12 4195 . 2 (𝐴 ∩ (𝐵𝐶)) = (𝐵 ∩ (𝐴𝐶))
3 incom 4175 . 2 (𝐵 ∩ (𝐴𝐶)) = ((𝐴𝐶) ∩ 𝐵)
41, 2, 33eqtri 2757 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∩ 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cin 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-in 3924
This theorem is referenced by:  in13  4197  inrot  4199  wefrc  5635  imainrect  6157  sspred  6286  fpwwe2  10603  incexclem  15809  setsfun  17148  setsfun0  17149  ressress  17224  kgeni  23431  kgencn3  23452  fclsrest  23918  voliunlem1  25458  bj-disj2r  37023  refrelsredund4  38630
  Copyright terms: Public domain W3C validator