| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > in32 | Structured version Visualization version GIF version | ||
| Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| in32 | ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inass 4194 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) | |
| 2 | in12 4195 | . 2 ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐵 ∩ (𝐴 ∩ 𝐶)) | |
| 3 | incom 4175 | . 2 ⊢ (𝐵 ∩ (𝐴 ∩ 𝐶)) = ((𝐴 ∩ 𝐶) ∩ 𝐵) | |
| 4 | 1, 2, 3 | 3eqtri 2757 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∩ cin 3916 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-in 3924 |
| This theorem is referenced by: in13 4197 inrot 4199 wefrc 5635 imainrect 6157 sspred 6286 fpwwe2 10603 incexclem 15809 setsfun 17148 setsfun0 17149 ressress 17224 kgeni 23431 kgencn3 23452 fclsrest 23918 voliunlem1 25458 bj-disj2r 37023 refrelsredund4 38630 |
| Copyright terms: Public domain | W3C validator |