MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  in32 Structured version   Visualization version   GIF version

Theorem in32 4251
Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) (Proof shortened by Andrew Salmon, 26-Jun-2011.)
Assertion
Ref Expression
in32 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∩ 𝐵)

Proof of Theorem in32
StepHypRef Expression
1 inass 4249 . 2 ((𝐴𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵𝐶))
2 in12 4250 . 2 (𝐴 ∩ (𝐵𝐶)) = (𝐵 ∩ (𝐴𝐶))
3 incom 4230 . 2 (𝐵 ∩ (𝐴𝐶)) = ((𝐴𝐶) ∩ 𝐵)
41, 2, 33eqtri 2772 1 ((𝐴𝐵) ∩ 𝐶) = ((𝐴𝐶) ∩ 𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cin 3975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-in 3983
This theorem is referenced by:  in13  4252  inrot  4254  wefrc  5694  imainrect  6212  sspred  6341  fpwwe2  10712  incexclem  15884  setsfun  17218  setsfun0  17219  ressress  17307  kgeni  23566  kgencn3  23587  fclsrest  24053  voliunlem1  25604  bj-disj2r  36994  refrelsredund4  38588
  Copyright terms: Public domain W3C validator