Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > in32 | Structured version Visualization version GIF version |
Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
in32 | ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass 4150 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) | |
2 | in12 4151 | . 2 ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐵 ∩ (𝐴 ∩ 𝐶)) | |
3 | incom 4131 | . 2 ⊢ (𝐵 ∩ (𝐴 ∩ 𝐶)) = ((𝐴 ∩ 𝐶) ∩ 𝐵) | |
4 | 1, 2, 3 | 3eqtri 2770 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3882 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-in 3890 |
This theorem is referenced by: in13 4153 inrot 4155 wefrc 5574 imainrect 6073 sspred 6200 fpwwe2 10330 incexclem 15476 setsfun 16800 setsfun0 16801 ressress 16884 kgeni 22596 kgencn3 22617 fclsrest 23083 voliunlem1 24619 bj-disj2r 35145 refrelsredund4 36672 |
Copyright terms: Public domain | W3C validator |