![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > in32 | Structured version Visualization version GIF version |
Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
Ref | Expression |
---|---|
in32 | ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inass 4218 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) | |
2 | in12 4219 | . 2 ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐵 ∩ (𝐴 ∩ 𝐶)) | |
3 | incom 4200 | . 2 ⊢ (𝐵 ∩ (𝐴 ∩ 𝐶)) = ((𝐴 ∩ 𝐶) ∩ 𝐵) | |
4 | 1, 2, 3 | 3eqtri 2762 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∩ cin 3946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-in 3954 |
This theorem is referenced by: in13 4221 inrot 4223 wefrc 5669 imainrect 6179 sspred 6308 fpwwe2 10640 incexclem 15786 setsfun 17108 setsfun0 17109 ressress 17197 kgeni 23261 kgencn3 23282 fclsrest 23748 voliunlem1 25299 bj-disj2r 36212 refrelsredund4 37805 |
Copyright terms: Public domain | W3C validator |