| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > in32 | Structured version Visualization version GIF version | ||
| Description: A rearrangement of intersection. (Contributed by NM, 21-Apr-2001.) (Proof shortened by Andrew Salmon, 26-Jun-2011.) |
| Ref | Expression |
|---|---|
| in32 | ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inass 4175 | . 2 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = (𝐴 ∩ (𝐵 ∩ 𝐶)) | |
| 2 | in12 4176 | . 2 ⊢ (𝐴 ∩ (𝐵 ∩ 𝐶)) = (𝐵 ∩ (𝐴 ∩ 𝐶)) | |
| 3 | incom 4156 | . 2 ⊢ (𝐵 ∩ (𝐴 ∩ 𝐶)) = ((𝐴 ∩ 𝐶) ∩ 𝐵) | |
| 4 | 1, 2, 3 | 3eqtri 2758 | 1 ⊢ ((𝐴 ∩ 𝐵) ∩ 𝐶) = ((𝐴 ∩ 𝐶) ∩ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-in 3904 |
| This theorem is referenced by: in13 4178 inrot 4180 wefrc 5608 imainrect 6128 sspred 6257 fpwwe2 10534 incexclem 15743 setsfun 17082 setsfun0 17083 ressress 17158 kgeni 23452 kgencn3 23473 fclsrest 23939 voliunlem1 25478 bj-disj2r 37070 refrelsredund4 38677 |
| Copyright terms: Public domain | W3C validator |