|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem25 | Structured version Visualization version GIF version | ||
| Description: Lemma for mapdpg 41708. Baer p. 45 line 12: "Then we have Gy' = Gy'' and G(x'-y') = G(x'-y'')." (Contributed by NM, 21-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| mapdpg.h | ⊢ 𝐻 = (LHyp‘𝐾) | 
| mapdpg.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | 
| mapdpg.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | 
| mapdpg.v | ⊢ 𝑉 = (Base‘𝑈) | 
| mapdpg.s | ⊢ − = (-g‘𝑈) | 
| mapdpg.z | ⊢ 0 = (0g‘𝑈) | 
| mapdpg.n | ⊢ 𝑁 = (LSpan‘𝑈) | 
| mapdpg.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | 
| mapdpg.f | ⊢ 𝐹 = (Base‘𝐶) | 
| mapdpg.r | ⊢ 𝑅 = (-g‘𝐶) | 
| mapdpg.j | ⊢ 𝐽 = (LSpan‘𝐶) | 
| mapdpg.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| mapdpg.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | 
| mapdpg.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | 
| mapdpg.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) | 
| mapdpg.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | 
| mapdpg.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) | 
| mapdpgem25.h1 | ⊢ (𝜑 → (ℎ ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})))) | 
| mapdpgem25.i1 | ⊢ (𝜑 → (𝑖 ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) | 
| Ref | Expression | 
|---|---|
| mapdpglem25 | ⊢ (𝜑 → ((𝐽‘{ℎ}) = (𝐽‘{𝑖}) ∧ (𝐽‘{(𝐺𝑅ℎ)}) = (𝐽‘{(𝐺𝑅𝑖)}))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mapdpgem25.h1 | . . . . 5 ⊢ (𝜑 → (ℎ ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})))) | |
| 2 | 1 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)}))) | 
| 3 | 2 | simpld 494 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ})) | 
| 4 | mapdpgem25.i1 | . . . . 5 ⊢ (𝜑 → (𝑖 ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) | |
| 5 | 4 | simprd 495 | . . . 4 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))) | 
| 6 | 5 | simpld 494 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖})) | 
| 7 | 3, 6 | eqtr3d 2779 | . 2 ⊢ (𝜑 → (𝐽‘{ℎ}) = (𝐽‘{𝑖})) | 
| 8 | 2 | simprd 495 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})) | 
| 9 | 5 | simprd 495 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})) | 
| 10 | 8, 9 | eqtr3d 2779 | . 2 ⊢ (𝜑 → (𝐽‘{(𝐺𝑅ℎ)}) = (𝐽‘{(𝐺𝑅𝑖)})) | 
| 11 | 7, 10 | jca 511 | 1 ⊢ (𝜑 → ((𝐽‘{ℎ}) = (𝐽‘{𝑖}) ∧ (𝐽‘{(𝐺𝑅ℎ)}) = (𝐽‘{(𝐺𝑅𝑖)}))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∖ cdif 3948 {csn 4626 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 0gc0g 17484 -gcsg 18953 LSpanclspn 20969 HLchlt 39351 LHypclh 39986 DVecHcdvh 41080 LCDualclcd 41588 mapdcmpd 41626 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2729 | 
| This theorem is referenced by: mapdpglem26 41700 mapdpglem27 41701 | 
| Copyright terms: Public domain | W3C validator |