Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpg Structured version   Visualization version   GIF version

Theorem mapdpg 39714
Description: Part 1 of proof of the first fundamental theorem of projective geometry. Part (1) in [Baer] p. 44. Our notation corresponds to Baer's as follows: 𝑀 for *, 𝑁‘{} for F(), 𝐽‘{} for G(), 𝑋 for x, 𝐺 for x', 𝑌 for y, for y'. TODO: Rename variables per mapdhval 39732. (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h 𝐻 = (LHyp‘𝐾)
mapdpg.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpg.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpg.v 𝑉 = (Base‘𝑈)
mapdpg.s = (-g𝑈)
mapdpg.z 0 = (0g𝑈)
mapdpg.n 𝑁 = (LSpan‘𝑈)
mapdpg.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpg.f 𝐹 = (Base‘𝐶)
mapdpg.r 𝑅 = (-g𝐶)
mapdpg.j 𝐽 = (LSpan‘𝐶)
mapdpg.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpg.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdpg.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdpg.g (𝜑𝐺𝐹)
mapdpg.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpg.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
Assertion
Ref Expression
mapdpg (𝜑 → ∃!𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
Distinct variable groups:   𝐶,   ,𝐹   ,𝐺   ,𝐽   ,𝑀   ,𝑁   𝑅,   ,   𝑈,   ,𝑋   ,𝑌   𝜑,
Allowed substitution hints:   𝐻()   𝐾()   𝑉()   𝑊()   0 ()

Proof of Theorem mapdpg
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 mapdpg.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdpg.m . . 3 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdpg.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 mapdpg.v . . 3 𝑉 = (Base‘𝑈)
5 mapdpg.s . . 3 = (-g𝑈)
6 mapdpg.z . . 3 0 = (0g𝑈)
7 mapdpg.n . . 3 𝑁 = (LSpan‘𝑈)
8 mapdpg.c . . 3 𝐶 = ((LCDual‘𝐾)‘𝑊)
9 mapdpg.f . . 3 𝐹 = (Base‘𝐶)
10 mapdpg.r . . 3 𝑅 = (-g𝐶)
11 mapdpg.j . . 3 𝐽 = (LSpan‘𝐶)
12 mapdpg.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 mapdpg.x . . 3 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
14 mapdpg.y . . 3 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
15 mapdpg.g . . 3 (𝜑𝐺𝐹)
16 mapdpg.ne . . 3 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
17 mapdpg.e . . 3 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
181, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17mapdpglem24 39712 . 2 (𝜑 → ∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17mapdpglem32 39713 . . . 4 ((𝜑 ∧ (𝐹𝑖𝐹) ∧ (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) → = 𝑖)
20193exp 1118 . . 3 (𝜑 → ((𝐹𝑖𝐹) → ((((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))) → = 𝑖)))
2120ralrimivv 3116 . 2 (𝜑 → ∀𝐹𝑖𝐹 ((((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))) → = 𝑖))
22 sneq 4577 . . . . . 6 ( = 𝑖 → {} = {𝑖})
2322fveq2d 6773 . . . . 5 ( = 𝑖 → (𝐽‘{}) = (𝐽‘{𝑖}))
2423eqeq2d 2751 . . . 4 ( = 𝑖 → ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ↔ (𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖})))
25 oveq2 7277 . . . . . . 7 ( = 𝑖 → (𝐺𝑅) = (𝐺𝑅𝑖))
2625sneqd 4579 . . . . . 6 ( = 𝑖 → {(𝐺𝑅)} = {(𝐺𝑅𝑖)})
2726fveq2d 6773 . . . . 5 ( = 𝑖 → (𝐽‘{(𝐺𝑅)}) = (𝐽‘{(𝐺𝑅𝑖)}))
2827eqeq2d 2751 . . . 4 ( = 𝑖 → ((𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}) ↔ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))
2924, 28anbi12d 631 . . 3 ( = 𝑖 → (((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
3029reu4 3670 . 2 (∃!𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ↔ (∃𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ∀𝐹𝑖𝐹 ((((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})) ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))) → = 𝑖)))
3118, 21, 30sylanbrc 583 1 (𝜑 → ∃!𝐹 ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wcel 2110  wne 2945  wral 3066  wrex 3067  ∃!wreu 3068  cdif 3889  {csn 4567  cfv 6431  (class class class)co 7269  Basecbs 16908  0gc0g 17146  -gcsg 18575  LSpanclspn 20229  HLchlt 37358  LHypclh 37992  DVecHcdvh 39086  LCDualclcd 39594  mapdcmpd 39632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580  ax-cnex 10926  ax-resscn 10927  ax-1cn 10928  ax-icn 10929  ax-addcl 10930  ax-addrcl 10931  ax-mulcl 10932  ax-mulrcl 10933  ax-mulcom 10934  ax-addass 10935  ax-mulass 10936  ax-distr 10937  ax-i2m1 10938  ax-1ne0 10939  ax-1rid 10940  ax-rnegex 10941  ax-rrecex 10942  ax-cnre 10943  ax-pre-lttri 10944  ax-pre-lttrn 10945  ax-pre-ltadd 10946  ax-pre-mulgt0 10947  ax-riotaBAD 36961
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6200  df-ord 6267  df-on 6268  df-lim 6269  df-suc 6270  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439  df-riota 7226  df-ov 7272  df-oprab 7273  df-mpo 7274  df-of 7525  df-om 7705  df-1st 7822  df-2nd 7823  df-tpos 8031  df-undef 8078  df-frecs 8086  df-wrecs 8117  df-recs 8191  df-rdg 8230  df-1o 8286  df-er 8479  df-map 8598  df-en 8715  df-dom 8716  df-sdom 8717  df-fin 8718  df-pnf 11010  df-mnf 11011  df-xr 11012  df-ltxr 11013  df-le 11014  df-sub 11205  df-neg 11206  df-nn 11972  df-2 12034  df-3 12035  df-4 12036  df-5 12037  df-6 12038  df-n0 12232  df-z 12318  df-uz 12580  df-fz 13237  df-struct 16844  df-sets 16861  df-slot 16879  df-ndx 16891  df-base 16909  df-ress 16938  df-plusg 16971  df-mulr 16972  df-sca 16974  df-vsca 16975  df-0g 17148  df-mre 17291  df-mrc 17292  df-acs 17294  df-proset 18009  df-poset 18027  df-plt 18044  df-lub 18060  df-glb 18061  df-join 18062  df-meet 18063  df-p0 18139  df-p1 18140  df-lat 18146  df-clat 18213  df-mgm 18322  df-sgrp 18371  df-mnd 18382  df-submnd 18427  df-grp 18576  df-minusg 18577  df-sbg 18578  df-subg 18748  df-cntz 18919  df-oppg 18946  df-lsm 19237  df-cmn 19384  df-abl 19385  df-mgp 19717  df-ur 19734  df-ring 19781  df-oppr 19858  df-dvdsr 19879  df-unit 19880  df-invr 19910  df-dvr 19921  df-drng 19989  df-lmod 20121  df-lss 20190  df-lsp 20230  df-lvec 20361  df-lsatoms 36984  df-lshyp 36985  df-lcv 37027  df-lfl 37066  df-lkr 37094  df-ldual 37132  df-oposet 37184  df-ol 37186  df-oml 37187  df-covers 37274  df-ats 37275  df-atl 37306  df-cvlat 37330  df-hlat 37359  df-llines 37506  df-lplanes 37507  df-lvols 37508  df-lines 37509  df-psubsp 37511  df-pmap 37512  df-padd 37804  df-lhyp 37996  df-laut 37997  df-ldil 38112  df-ltrn 38113  df-trl 38167  df-tgrp 38751  df-tendo 38763  df-edring 38765  df-dveca 39011  df-disoa 39037  df-dvech 39087  df-dib 39147  df-dic 39181  df-dih 39237  df-doch 39356  df-djh 39403  df-lcdual 39595  df-mapd 39633
This theorem is referenced by:  mapdhcl  39735  mapdheq  39736  hdmap1eq  39809
  Copyright terms: Public domain W3C validator