Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdpglem27 Structured version   Visualization version   GIF version

Theorem mapdpglem27 41693
Description: Lemma for mapdpg 41700. Baer p. 45 line 16: "v(x'-y'') = x'-y'" (with equality swapped). (Contributed by NM, 22-Mar-2015.)
Hypotheses
Ref Expression
mapdpg.h 𝐻 = (LHyp‘𝐾)
mapdpg.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdpg.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdpg.v 𝑉 = (Base‘𝑈)
mapdpg.s = (-g𝑈)
mapdpg.z 0 = (0g𝑈)
mapdpg.n 𝑁 = (LSpan‘𝑈)
mapdpg.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdpg.f 𝐹 = (Base‘𝐶)
mapdpg.r 𝑅 = (-g𝐶)
mapdpg.j 𝐽 = (LSpan‘𝐶)
mapdpg.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdpg.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdpg.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdpg.g (𝜑𝐺𝐹)
mapdpg.ne (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdpg.e (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
mapdpgem25.h1 (𝜑 → (𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
mapdpgem25.i1 (𝜑 → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
mapdpglem26.a 𝐴 = (Scalar‘𝑈)
mapdpglem26.b 𝐵 = (Base‘𝐴)
mapdpglem26.t · = ( ·𝑠𝐶)
mapdpglem26.o 𝑂 = (0g𝐴)
Assertion
Ref Expression
mapdpglem27 (𝜑 → ∃𝑣 ∈ (𝐵 ∖ {𝑂})(𝐺𝑅) = (𝑣 · (𝐺𝑅𝑖)))
Distinct variable groups:   ,𝑖,𝑣   𝑣,𝐵   𝑣,𝐶   𝑣,𝑂   𝑣, ·   𝑣,𝐺   𝑣,𝑅   𝜑,𝑣
Allowed substitution hints:   𝜑(,𝑖)   𝐴(𝑣,,𝑖)   𝐵(,𝑖)   𝐶(,𝑖)   𝑅(,𝑖)   · (,𝑖)   𝑈(𝑣,,𝑖)   𝐹(𝑣,,𝑖)   𝐺(,𝑖)   𝐻(𝑣,,𝑖)   𝐽(𝑣,,𝑖)   𝐾(𝑣,,𝑖)   𝑀(𝑣,,𝑖)   (𝑣,,𝑖)   𝑁(𝑣,,𝑖)   𝑂(,𝑖)   𝑉(𝑣,,𝑖)   𝑊(𝑣,,𝑖)   𝑋(𝑣,,𝑖)   𝑌(𝑣,,𝑖)   0 (𝑣,,𝑖)

Proof of Theorem mapdpglem27
StepHypRef Expression
1 mapdpg.h . . . 4 𝐻 = (LHyp‘𝐾)
2 mapdpg.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
3 mapdpg.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
4 mapdpg.v . . . 4 𝑉 = (Base‘𝑈)
5 mapdpg.s . . . 4 = (-g𝑈)
6 mapdpg.z . . . 4 0 = (0g𝑈)
7 mapdpg.n . . . 4 𝑁 = (LSpan‘𝑈)
8 mapdpg.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
9 mapdpg.f . . . 4 𝐹 = (Base‘𝐶)
10 mapdpg.r . . . 4 𝑅 = (-g𝐶)
11 mapdpg.j . . . 4 𝐽 = (LSpan‘𝐶)
12 mapdpg.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
13 mapdpg.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
14 mapdpg.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
15 mapdpg.g . . . 4 (𝜑𝐺𝐹)
16 mapdpg.ne . . . 4 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
17 mapdpg.e . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺}))
18 mapdpgem25.h1 . . . 4 (𝜑 → (𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅)}))))
19 mapdpgem25.i1 . . . 4 (𝜑 → (𝑖𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)}))))
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19mapdpglem25 41691 . . 3 (𝜑 → ((𝐽‘{}) = (𝐽‘{𝑖}) ∧ (𝐽‘{(𝐺𝑅)}) = (𝐽‘{(𝐺𝑅𝑖)})))
2120simprd 495 . 2 (𝜑 → (𝐽‘{(𝐺𝑅)}) = (𝐽‘{(𝐺𝑅𝑖)}))
22 eqid 2729 . . . 4 (Scalar‘𝐶) = (Scalar‘𝐶)
23 eqid 2729 . . . 4 (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶))
24 eqid 2729 . . . 4 (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘𝐶))
25 mapdpglem26.t . . . 4 · = ( ·𝑠𝐶)
261, 8, 12lcdlvec 41585 . . . 4 (𝜑𝐶 ∈ LVec)
271, 8, 12lcdlmod 41586 . . . . 5 (𝜑𝐶 ∈ LMod)
2818simpld 494 . . . . 5 (𝜑𝐹)
299, 10lmodvsubcl 20813 . . . . 5 ((𝐶 ∈ LMod ∧ 𝐺𝐹𝐹) → (𝐺𝑅) ∈ 𝐹)
3027, 15, 28, 29syl3anc 1373 . . . 4 (𝜑 → (𝐺𝑅) ∈ 𝐹)
3119simpld 494 . . . . 5 (𝜑𝑖𝐹)
329, 10lmodvsubcl 20813 . . . . 5 ((𝐶 ∈ LMod ∧ 𝐺𝐹𝑖𝐹) → (𝐺𝑅𝑖) ∈ 𝐹)
3327, 15, 31, 32syl3anc 1373 . . . 4 (𝜑 → (𝐺𝑅𝑖) ∈ 𝐹)
349, 22, 23, 24, 25, 11, 26, 30, 33lspsneq 21032 . . 3 (𝜑 → ((𝐽‘{(𝐺𝑅)}) = (𝐽‘{(𝐺𝑅𝑖)}) ↔ ∃𝑣 ∈ ((Base‘(Scalar‘𝐶)) ∖ {(0g‘(Scalar‘𝐶))})(𝐺𝑅) = (𝑣 · (𝐺𝑅𝑖))))
35 mapdpglem26.a . . . . . 6 𝐴 = (Scalar‘𝑈)
36 mapdpglem26.b . . . . . 6 𝐵 = (Base‘𝐴)
371, 3, 35, 36, 8, 22, 23, 12lcdsbase 41594 . . . . 5 (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵)
38 mapdpglem26.o . . . . . . 7 𝑂 = (0g𝐴)
391, 3, 35, 38, 8, 22, 24, 12lcd0 41602 . . . . . 6 (𝜑 → (0g‘(Scalar‘𝐶)) = 𝑂)
4039sneqd 4601 . . . . 5 (𝜑 → {(0g‘(Scalar‘𝐶))} = {𝑂})
4137, 40difeq12d 4090 . . . 4 (𝜑 → ((Base‘(Scalar‘𝐶)) ∖ {(0g‘(Scalar‘𝐶))}) = (𝐵 ∖ {𝑂}))
4241rexeqdv 3300 . . 3 (𝜑 → (∃𝑣 ∈ ((Base‘(Scalar‘𝐶)) ∖ {(0g‘(Scalar‘𝐶))})(𝐺𝑅) = (𝑣 · (𝐺𝑅𝑖)) ↔ ∃𝑣 ∈ (𝐵 ∖ {𝑂})(𝐺𝑅) = (𝑣 · (𝐺𝑅𝑖))))
4334, 42bitrd 279 . 2 (𝜑 → ((𝐽‘{(𝐺𝑅)}) = (𝐽‘{(𝐺𝑅𝑖)}) ↔ ∃𝑣 ∈ (𝐵 ∖ {𝑂})(𝐺𝑅) = (𝑣 · (𝐺𝑅𝑖))))
4421, 43mpbid 232 1 (𝜑 → ∃𝑣 ∈ (𝐵 ∖ {𝑂})(𝐺𝑅) = (𝑣 · (𝐺𝑅𝑖)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  cdif 3911  {csn 4589  cfv 6511  (class class class)co 7387  Basecbs 17179  Scalarcsca 17223   ·𝑠 cvsca 17224  0gc0g 17402  -gcsg 18867  LModclmod 20766  LSpanclspn 20877  HLchlt 39343  LHypclh 39978  DVecHcdvh 41072  LCDualclcd 41580  mapdcmpd 41618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-riotaBAD 38946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-tpos 8205  df-undef 8252  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-0g 17404  df-mre 17547  df-mrc 17548  df-acs 17550  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-p1 18385  df-lat 18391  df-clat 18458  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-cntz 19249  df-oppg 19278  df-lsm 19566  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-oppr 20246  df-dvdsr 20266  df-unit 20267  df-invr 20297  df-dvr 20310  df-nzr 20422  df-rlreg 20603  df-domn 20604  df-drng 20640  df-lmod 20768  df-lss 20838  df-lsp 20878  df-lvec 21010  df-lsatoms 38969  df-lshyp 38970  df-lcv 39012  df-lfl 39051  df-lkr 39079  df-ldual 39117  df-oposet 39169  df-ol 39171  df-oml 39172  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-llines 39492  df-lplanes 39493  df-lvols 39494  df-lines 39495  df-psubsp 39497  df-pmap 39498  df-padd 39790  df-lhyp 39982  df-laut 39983  df-ldil 40098  df-ltrn 40099  df-trl 40153  df-tgrp 40737  df-tendo 40749  df-edring 40751  df-dveca 40997  df-disoa 41023  df-dvech 41073  df-dib 41133  df-dic 41167  df-dih 41223  df-doch 41342  df-djh 41389  df-lcdual 41581
This theorem is referenced by:  mapdpglem32  41699
  Copyright terms: Public domain W3C validator