| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem27 | Structured version Visualization version GIF version | ||
| Description: Lemma for mapdpg 41826. Baer p. 45 line 16: "v(x'-y'') = x'-y'" (with equality swapped). (Contributed by NM, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapdpg.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdpg.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdpg.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdpg.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdpg.s | ⊢ − = (-g‘𝑈) |
| mapdpg.z | ⊢ 0 = (0g‘𝑈) |
| mapdpg.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdpg.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdpg.f | ⊢ 𝐹 = (Base‘𝐶) |
| mapdpg.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdpg.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdpg.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdpg.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| mapdpg.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| mapdpg.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| mapdpg.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| mapdpg.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
| mapdpgem25.h1 | ⊢ (𝜑 → (ℎ ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})))) |
| mapdpgem25.i1 | ⊢ (𝜑 → (𝑖 ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) |
| mapdpglem26.a | ⊢ 𝐴 = (Scalar‘𝑈) |
| mapdpglem26.b | ⊢ 𝐵 = (Base‘𝐴) |
| mapdpglem26.t | ⊢ · = ( ·𝑠 ‘𝐶) |
| mapdpglem26.o | ⊢ 𝑂 = (0g‘𝐴) |
| Ref | Expression |
|---|---|
| mapdpglem27 | ⊢ (𝜑 → ∃𝑣 ∈ (𝐵 ∖ {𝑂})(𝐺𝑅ℎ) = (𝑣 · (𝐺𝑅𝑖))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdpg.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdpg.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 3 | mapdpg.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | mapdpg.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
| 5 | mapdpg.s | . . . 4 ⊢ − = (-g‘𝑈) | |
| 6 | mapdpg.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
| 7 | mapdpg.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 8 | mapdpg.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 9 | mapdpg.f | . . . 4 ⊢ 𝐹 = (Base‘𝐶) | |
| 10 | mapdpg.r | . . . 4 ⊢ 𝑅 = (-g‘𝐶) | |
| 11 | mapdpg.j | . . . 4 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 12 | mapdpg.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 13 | mapdpg.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 14 | mapdpg.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 15 | mapdpg.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 16 | mapdpg.ne | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 17 | mapdpg.e | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) | |
| 18 | mapdpgem25.h1 | . . . 4 ⊢ (𝜑 → (ℎ ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})))) | |
| 19 | mapdpgem25.i1 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) | |
| 20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 | mapdpglem25 41817 | . . 3 ⊢ (𝜑 → ((𝐽‘{ℎ}) = (𝐽‘{𝑖}) ∧ (𝐽‘{(𝐺𝑅ℎ)}) = (𝐽‘{(𝐺𝑅𝑖)}))) |
| 21 | 20 | simprd 495 | . 2 ⊢ (𝜑 → (𝐽‘{(𝐺𝑅ℎ)}) = (𝐽‘{(𝐺𝑅𝑖)})) |
| 22 | eqid 2733 | . . . 4 ⊢ (Scalar‘𝐶) = (Scalar‘𝐶) | |
| 23 | eqid 2733 | . . . 4 ⊢ (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶)) | |
| 24 | eqid 2733 | . . . 4 ⊢ (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘𝐶)) | |
| 25 | mapdpglem26.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝐶) | |
| 26 | 1, 8, 12 | lcdlvec 41711 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LVec) |
| 27 | 1, 8, 12 | lcdlmod 41712 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ LMod) |
| 28 | 18 | simpld 494 | . . . . 5 ⊢ (𝜑 → ℎ ∈ 𝐹) |
| 29 | 9, 10 | lmodvsubcl 20842 | . . . . 5 ⊢ ((𝐶 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ ℎ ∈ 𝐹) → (𝐺𝑅ℎ) ∈ 𝐹) |
| 30 | 27, 15, 28, 29 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐺𝑅ℎ) ∈ 𝐹) |
| 31 | 19 | simpld 494 | . . . . 5 ⊢ (𝜑 → 𝑖 ∈ 𝐹) |
| 32 | 9, 10 | lmodvsubcl 20842 | . . . . 5 ⊢ ((𝐶 ∈ LMod ∧ 𝐺 ∈ 𝐹 ∧ 𝑖 ∈ 𝐹) → (𝐺𝑅𝑖) ∈ 𝐹) |
| 33 | 27, 15, 31, 32 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝐺𝑅𝑖) ∈ 𝐹) |
| 34 | 9, 22, 23, 24, 25, 11, 26, 30, 33 | lspsneq 21061 | . . 3 ⊢ (𝜑 → ((𝐽‘{(𝐺𝑅ℎ)}) = (𝐽‘{(𝐺𝑅𝑖)}) ↔ ∃𝑣 ∈ ((Base‘(Scalar‘𝐶)) ∖ {(0g‘(Scalar‘𝐶))})(𝐺𝑅ℎ) = (𝑣 · (𝐺𝑅𝑖)))) |
| 35 | mapdpglem26.a | . . . . . 6 ⊢ 𝐴 = (Scalar‘𝑈) | |
| 36 | mapdpglem26.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 37 | 1, 3, 35, 36, 8, 22, 23, 12 | lcdsbase 41720 | . . . . 5 ⊢ (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵) |
| 38 | mapdpglem26.o | . . . . . . 7 ⊢ 𝑂 = (0g‘𝐴) | |
| 39 | 1, 3, 35, 38, 8, 22, 24, 12 | lcd0 41728 | . . . . . 6 ⊢ (𝜑 → (0g‘(Scalar‘𝐶)) = 𝑂) |
| 40 | 39 | sneqd 4587 | . . . . 5 ⊢ (𝜑 → {(0g‘(Scalar‘𝐶))} = {𝑂}) |
| 41 | 37, 40 | difeq12d 4076 | . . . 4 ⊢ (𝜑 → ((Base‘(Scalar‘𝐶)) ∖ {(0g‘(Scalar‘𝐶))}) = (𝐵 ∖ {𝑂})) |
| 42 | 41 | rexeqdv 3294 | . . 3 ⊢ (𝜑 → (∃𝑣 ∈ ((Base‘(Scalar‘𝐶)) ∖ {(0g‘(Scalar‘𝐶))})(𝐺𝑅ℎ) = (𝑣 · (𝐺𝑅𝑖)) ↔ ∃𝑣 ∈ (𝐵 ∖ {𝑂})(𝐺𝑅ℎ) = (𝑣 · (𝐺𝑅𝑖)))) |
| 43 | 34, 42 | bitrd 279 | . 2 ⊢ (𝜑 → ((𝐽‘{(𝐺𝑅ℎ)}) = (𝐽‘{(𝐺𝑅𝑖)}) ↔ ∃𝑣 ∈ (𝐵 ∖ {𝑂})(𝐺𝑅ℎ) = (𝑣 · (𝐺𝑅𝑖)))) |
| 44 | 21, 43 | mpbid 232 | 1 ⊢ (𝜑 → ∃𝑣 ∈ (𝐵 ∖ {𝑂})(𝐺𝑅ℎ) = (𝑣 · (𝐺𝑅𝑖))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 ∃wrex 3057 ∖ cdif 3895 {csn 4575 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Scalarcsca 17166 ·𝑠 cvsca 17167 0gc0g 17345 -gcsg 18850 LModclmod 20795 LSpanclspn 20906 HLchlt 39470 LHypclh 40104 DVecHcdvh 41198 LCDualclcd 41706 mapdcmpd 41744 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-riotaBAD 39073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-undef 8209 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-n0 12389 df-z 12476 df-uz 12739 df-fz 13410 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-sca 17179 df-vsca 17180 df-0g 17347 df-mre 17490 df-mrc 17491 df-acs 17493 df-proset 18202 df-poset 18221 df-plt 18236 df-lub 18252 df-glb 18253 df-join 18254 df-meet 18255 df-p0 18331 df-p1 18332 df-lat 18340 df-clat 18407 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-grp 18851 df-minusg 18852 df-sbg 18853 df-subg 19038 df-cntz 19231 df-oppg 19260 df-lsm 19550 df-cmn 19696 df-abl 19697 df-mgp 20061 df-rng 20073 df-ur 20102 df-ring 20155 df-oppr 20257 df-dvdsr 20277 df-unit 20278 df-invr 20308 df-dvr 20321 df-nzr 20430 df-rlreg 20611 df-domn 20612 df-drng 20648 df-lmod 20797 df-lss 20867 df-lsp 20907 df-lvec 21039 df-lsatoms 39096 df-lshyp 39097 df-lcv 39139 df-lfl 39178 df-lkr 39206 df-ldual 39244 df-oposet 39296 df-ol 39298 df-oml 39299 df-covers 39386 df-ats 39387 df-atl 39418 df-cvlat 39442 df-hlat 39471 df-llines 39618 df-lplanes 39619 df-lvols 39620 df-lines 39621 df-psubsp 39623 df-pmap 39624 df-padd 39916 df-lhyp 40108 df-laut 40109 df-ldil 40224 df-ltrn 40225 df-trl 40279 df-tgrp 40863 df-tendo 40875 df-edring 40877 df-dveca 41123 df-disoa 41149 df-dvech 41199 df-dib 41259 df-dic 41293 df-dih 41349 df-doch 41468 df-djh 41515 df-lcdual 41707 |
| This theorem is referenced by: mapdpglem32 41825 |
| Copyright terms: Public domain | W3C validator |