| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdpglem26 | Structured version Visualization version GIF version | ||
| Description: Lemma for mapdpg 41725. Baer p. 45 line 14: "Consequently there exist numbers u,v in G neither of which is 0 such that y = uy'' and..." (We scope $d 𝑢𝜑 locally to avoid clashes with later substitutions into 𝜑.) (Contributed by NM, 22-Mar-2015.) |
| Ref | Expression |
|---|---|
| mapdpg.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdpg.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdpg.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdpg.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdpg.s | ⊢ − = (-g‘𝑈) |
| mapdpg.z | ⊢ 0 = (0g‘𝑈) |
| mapdpg.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdpg.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdpg.f | ⊢ 𝐹 = (Base‘𝐶) |
| mapdpg.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdpg.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdpg.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdpg.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| mapdpg.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| mapdpg.g | ⊢ (𝜑 → 𝐺 ∈ 𝐹) |
| mapdpg.ne | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| mapdpg.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) |
| mapdpgem25.h1 | ⊢ (𝜑 → (ℎ ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})))) |
| mapdpgem25.i1 | ⊢ (𝜑 → (𝑖 ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) |
| mapdpglem26.a | ⊢ 𝐴 = (Scalar‘𝑈) |
| mapdpglem26.b | ⊢ 𝐵 = (Base‘𝐴) |
| mapdpglem26.t | ⊢ · = ( ·𝑠 ‘𝐶) |
| mapdpglem26.o | ⊢ 𝑂 = (0g‘𝐴) |
| Ref | Expression |
|---|---|
| mapdpglem26 | ⊢ (𝜑 → ∃𝑢 ∈ (𝐵 ∖ {𝑂})ℎ = (𝑢 · 𝑖)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdpg.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdpg.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 3 | mapdpg.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 4 | mapdpg.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
| 5 | mapdpg.s | . . . 4 ⊢ − = (-g‘𝑈) | |
| 6 | mapdpg.z | . . . 4 ⊢ 0 = (0g‘𝑈) | |
| 7 | mapdpg.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 8 | mapdpg.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 9 | mapdpg.f | . . . 4 ⊢ 𝐹 = (Base‘𝐶) | |
| 10 | mapdpg.r | . . . 4 ⊢ 𝑅 = (-g‘𝐶) | |
| 11 | mapdpg.j | . . . 4 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 12 | mapdpg.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 13 | mapdpg.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 14 | mapdpg.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 15 | mapdpg.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐹) | |
| 16 | mapdpg.ne | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 17 | mapdpg.e | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐺})) | |
| 18 | mapdpgem25.h1 | . . . 4 ⊢ (𝜑 → (ℎ ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅ℎ)})))) | |
| 19 | mapdpgem25.i1 | . . . 4 ⊢ (𝜑 → (𝑖 ∈ 𝐹 ∧ ((𝑀‘(𝑁‘{𝑌})) = (𝐽‘{𝑖}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐽‘{(𝐺𝑅𝑖)})))) | |
| 20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 | mapdpglem25 41716 | . . 3 ⊢ (𝜑 → ((𝐽‘{ℎ}) = (𝐽‘{𝑖}) ∧ (𝐽‘{(𝐺𝑅ℎ)}) = (𝐽‘{(𝐺𝑅𝑖)}))) |
| 21 | 20 | simpld 494 | . 2 ⊢ (𝜑 → (𝐽‘{ℎ}) = (𝐽‘{𝑖})) |
| 22 | eqid 2735 | . . . 4 ⊢ (Scalar‘𝐶) = (Scalar‘𝐶) | |
| 23 | eqid 2735 | . . . 4 ⊢ (Base‘(Scalar‘𝐶)) = (Base‘(Scalar‘𝐶)) | |
| 24 | eqid 2735 | . . . 4 ⊢ (0g‘(Scalar‘𝐶)) = (0g‘(Scalar‘𝐶)) | |
| 25 | mapdpglem26.t | . . . 4 ⊢ · = ( ·𝑠 ‘𝐶) | |
| 26 | 1, 8, 12 | lcdlvec 41610 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LVec) |
| 27 | 18 | simpld 494 | . . . 4 ⊢ (𝜑 → ℎ ∈ 𝐹) |
| 28 | 19 | simpld 494 | . . . 4 ⊢ (𝜑 → 𝑖 ∈ 𝐹) |
| 29 | 9, 22, 23, 24, 25, 11, 26, 27, 28 | lspsneq 21083 | . . 3 ⊢ (𝜑 → ((𝐽‘{ℎ}) = (𝐽‘{𝑖}) ↔ ∃𝑢 ∈ ((Base‘(Scalar‘𝐶)) ∖ {(0g‘(Scalar‘𝐶))})ℎ = (𝑢 · 𝑖))) |
| 30 | mapdpglem26.a | . . . . . 6 ⊢ 𝐴 = (Scalar‘𝑈) | |
| 31 | mapdpglem26.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 32 | 1, 3, 30, 31, 8, 22, 23, 12 | lcdsbase 41619 | . . . . 5 ⊢ (𝜑 → (Base‘(Scalar‘𝐶)) = 𝐵) |
| 33 | mapdpglem26.o | . . . . . . 7 ⊢ 𝑂 = (0g‘𝐴) | |
| 34 | 1, 3, 30, 33, 8, 22, 24, 12 | lcd0 41627 | . . . . . 6 ⊢ (𝜑 → (0g‘(Scalar‘𝐶)) = 𝑂) |
| 35 | 34 | sneqd 4613 | . . . . 5 ⊢ (𝜑 → {(0g‘(Scalar‘𝐶))} = {𝑂}) |
| 36 | 32, 35 | difeq12d 4102 | . . . 4 ⊢ (𝜑 → ((Base‘(Scalar‘𝐶)) ∖ {(0g‘(Scalar‘𝐶))}) = (𝐵 ∖ {𝑂})) |
| 37 | 36 | rexeqdv 3306 | . . 3 ⊢ (𝜑 → (∃𝑢 ∈ ((Base‘(Scalar‘𝐶)) ∖ {(0g‘(Scalar‘𝐶))})ℎ = (𝑢 · 𝑖) ↔ ∃𝑢 ∈ (𝐵 ∖ {𝑂})ℎ = (𝑢 · 𝑖))) |
| 38 | 29, 37 | bitrd 279 | . 2 ⊢ (𝜑 → ((𝐽‘{ℎ}) = (𝐽‘{𝑖}) ↔ ∃𝑢 ∈ (𝐵 ∖ {𝑂})ℎ = (𝑢 · 𝑖))) |
| 39 | 21, 38 | mpbid 232 | 1 ⊢ (𝜑 → ∃𝑢 ∈ (𝐵 ∖ {𝑂})ℎ = (𝑢 · 𝑖)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∃wrex 3060 ∖ cdif 3923 {csn 4601 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 Scalarcsca 17274 ·𝑠 cvsca 17275 0gc0g 17453 -gcsg 18918 LSpanclspn 20928 HLchlt 39368 LHypclh 40003 DVecHcdvh 41097 LCDualclcd 41605 mapdcmpd 41643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-riotaBAD 38971 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-om 7862 df-1st 7988 df-2nd 7989 df-tpos 8225 df-undef 8272 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-sca 17287 df-vsca 17288 df-0g 17455 df-mre 17598 df-mrc 17599 df-acs 17601 df-proset 18306 df-poset 18325 df-plt 18340 df-lub 18356 df-glb 18357 df-join 18358 df-meet 18359 df-p0 18435 df-p1 18436 df-lat 18442 df-clat 18509 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-submnd 18762 df-grp 18919 df-minusg 18920 df-sbg 18921 df-subg 19106 df-cntz 19300 df-oppg 19329 df-lsm 19617 df-cmn 19763 df-abl 19764 df-mgp 20101 df-rng 20113 df-ur 20142 df-ring 20195 df-oppr 20297 df-dvdsr 20317 df-unit 20318 df-invr 20348 df-dvr 20361 df-nzr 20473 df-rlreg 20654 df-domn 20655 df-drng 20691 df-lmod 20819 df-lss 20889 df-lsp 20929 df-lvec 21061 df-lsatoms 38994 df-lshyp 38995 df-lcv 39037 df-lfl 39076 df-lkr 39104 df-ldual 39142 df-oposet 39194 df-ol 39196 df-oml 39197 df-covers 39284 df-ats 39285 df-atl 39316 df-cvlat 39340 df-hlat 39369 df-llines 39517 df-lplanes 39518 df-lvols 39519 df-lines 39520 df-psubsp 39522 df-pmap 39523 df-padd 39815 df-lhyp 40007 df-laut 40008 df-ldil 40123 df-ltrn 40124 df-trl 40178 df-tgrp 40762 df-tendo 40774 df-edring 40776 df-dveca 41022 df-disoa 41048 df-dvech 41098 df-dib 41158 df-dic 41192 df-dih 41248 df-doch 41367 df-djh 41414 df-lcdual 41606 |
| This theorem is referenced by: mapdpglem32 41724 |
| Copyright terms: Public domain | W3C validator |