| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mobi | Structured version Visualization version GIF version | ||
| Description: Equivalence theorem for the at-most-one quantifier. (Contributed by BJ, 7-Oct-2022.) (Proof shortened by Wolf Lammen, 18-Feb-2023.) |
| Ref | Expression |
|---|---|
| mobi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃*𝑥𝜑 ↔ ∃*𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albiim 1889 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜑))) | |
| 2 | moim 2543 | . . . 4 ⊢ (∀𝑥(𝜓 → 𝜑) → (∃*𝑥𝜑 → ∃*𝑥𝜓)) | |
| 3 | moim 2543 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) | |
| 4 | 2, 3 | impbid21d 211 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜓 → 𝜑) → (∃*𝑥𝜑 ↔ ∃*𝑥𝜓))) |
| 5 | 4 | imp 406 | . 2 ⊢ ((∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜑)) → (∃*𝑥𝜑 ↔ ∃*𝑥𝜓)) |
| 6 | 1, 5 | sylbi 217 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃*𝑥𝜑 ↔ ∃*𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃*wmo 2537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2539 |
| This theorem is referenced by: mobidv 2548 mobid 2549 eubi 2583 |
| Copyright terms: Public domain | W3C validator |