Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mobi | Structured version Visualization version GIF version |
Description: Equivalence theorem for the at-most-one quantifier. (Contributed by BJ, 7-Oct-2022.) (Proof shortened by Wolf Lammen, 18-Feb-2023.) |
Ref | Expression |
---|---|
mobi | ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃*𝑥𝜑 ↔ ∃*𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albiim 1893 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜑))) | |
2 | moim 2544 | . . . 4 ⊢ (∀𝑥(𝜓 → 𝜑) → (∃*𝑥𝜑 → ∃*𝑥𝜓)) | |
3 | moim 2544 | . . . 4 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) | |
4 | 2, 3 | impbid21d 210 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜓 → 𝜑) → (∃*𝑥𝜑 ↔ ∃*𝑥𝜓))) |
5 | 4 | imp 406 | . 2 ⊢ ((∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜑)) → (∃*𝑥𝜑 ↔ ∃*𝑥𝜓)) |
6 | 1, 5 | sylbi 216 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) → (∃*𝑥𝜑 ↔ ∃*𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1537 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-mo 2540 |
This theorem is referenced by: mobidv 2549 mobid 2550 eubi 2584 |
Copyright terms: Public domain | W3C validator |