![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > albiim | Structured version Visualization version GIF version |
Description: Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993.) |
Ref | Expression |
---|---|
albiim | ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfbi2 474 | . . 3 ⊢ ((𝜑 ↔ 𝜓) ↔ ((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) | |
2 | 1 | albii 1814 | . 2 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ ∀𝑥((𝜑 → 𝜓) ∧ (𝜓 → 𝜑))) |
3 | 19.26 1866 | . 2 ⊢ (∀𝑥((𝜑 → 𝜓) ∧ (𝜓 → 𝜑)) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜑))) | |
4 | 2, 3 | bitri 275 | 1 ⊢ (∀𝑥(𝜑 ↔ 𝜓) ↔ (∀𝑥(𝜑 → 𝜓) ∧ ∀𝑥(𝜓 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∀wal 1532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: 2albiim 1886 dfmoeu 2526 mobi 2537 eu6lem 2563 eu1 2602 eqss 3995 rabeqsnd 4672 ssext 5456 asymref2 6123 pm14.122a 43859 |
Copyright terms: Public domain | W3C validator |