MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  albiim Structured version   Visualization version   GIF version

Theorem albiim 1887
Description: Split a biconditional and distribute quantifier. (Contributed by NM, 18-Aug-1993.)
Assertion
Ref Expression
albiim (∀𝑥(𝜑𝜓) ↔ (∀𝑥(𝜑𝜓) ∧ ∀𝑥(𝜓𝜑)))

Proof of Theorem albiim
StepHypRef Expression
1 dfbi2 474 . . 3 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
21albii 1816 . 2 (∀𝑥(𝜑𝜓) ↔ ∀𝑥((𝜑𝜓) ∧ (𝜓𝜑)))
3 19.26 1868 . 2 (∀𝑥((𝜑𝜓) ∧ (𝜓𝜑)) ↔ (∀𝑥(𝜑𝜓) ∧ ∀𝑥(𝜓𝜑)))
42, 3bitri 275 1 (∀𝑥(𝜑𝜓) ↔ (∀𝑥(𝜑𝜓) ∧ ∀𝑥(𝜓𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  2albiim  1888  dfmoeu  2534  mobi  2545  eu6lem  2571  eu1  2608  eqss  4011  rabeqsnd  4674  ssext  5465  asymref2  6140  eu6w  42663  pm14.122a  44418
  Copyright terms: Public domain W3C validator