MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moim Structured version   Visualization version   GIF version

Theorem moim 2534
Description: The at-most-one quantifier reverses implication. (Contributed by NM, 22-Apr-1995.)
Assertion
Ref Expression
moim (∀𝑥(𝜑𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑))

Proof of Theorem moim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 imim1 83 . . . 4 ((𝜑𝜓) → ((𝜓𝑥 = 𝑦) → (𝜑𝑥 = 𝑦)))
21al2imi 1810 . . 3 (∀𝑥(𝜑𝜓) → (∀𝑥(𝜓𝑥 = 𝑦) → ∀𝑥(𝜑𝑥 = 𝑦)))
32eximdv 1913 . 2 (∀𝑥(𝜑𝜓) → (∃𝑦𝑥(𝜓𝑥 = 𝑦) → ∃𝑦𝑥(𝜑𝑥 = 𝑦)))
4 df-mo 2530 . 2 (∃*𝑥𝜓 ↔ ∃𝑦𝑥(𝜓𝑥 = 𝑦))
5 df-mo 2530 . 2 (∃*𝑥𝜑 ↔ ∃𝑦𝑥(𝜑𝑥 = 𝑦))
63, 4, 53imtr4g 296 1 (∀𝑥(𝜑𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1532  wex 1774  ∃*wmo 2528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906
This theorem depends on definitions:  df-bi 206  df-ex 1775  df-mo 2530
This theorem is referenced by:  moimdv  2536  mobi  2537  euimmo  2608  moexexlem  2618  rmoim  3734  rmoimi2  3737  ssrmof  4046  disjss3  5142  funmo  6563  funmoOLD  6564  uptx  23523  taylf  26289
  Copyright terms: Public domain W3C validator