Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > moim | Structured version Visualization version GIF version |
Description: The at-most-one quantifier reverses implication. (Contributed by NM, 22-Apr-1995.) |
Ref | Expression |
---|---|
moim | ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imim1 83 | . . . 4 ⊢ ((𝜑 → 𝜓) → ((𝜓 → 𝑥 = 𝑦) → (𝜑 → 𝑥 = 𝑦))) | |
2 | 1 | al2imi 1818 | . . 3 ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜓 → 𝑥 = 𝑦) → ∀𝑥(𝜑 → 𝑥 = 𝑦))) |
3 | 2 | eximdv 1920 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦) → ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦))) |
4 | df-mo 2540 | . 2 ⊢ (∃*𝑥𝜓 ↔ ∃𝑦∀𝑥(𝜓 → 𝑥 = 𝑦)) | |
5 | df-mo 2540 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) | |
6 | 3, 4, 5 | 3imtr4g 296 | 1 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃wex 1782 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-mo 2540 |
This theorem is referenced by: moimdv 2546 mobi 2547 euimmo 2618 moexexlem 2628 rmoim 3675 rmoimi2 3678 ssrmof 3986 disjss3 5073 funmo 6450 uptx 22776 taylf 25520 |
Copyright terms: Public domain | W3C validator |