| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > moimdv | Structured version Visualization version GIF version | ||
| Description: The at-most-one quantifier reverses implication, deduction form. (Contributed by Thierry Arnoux, 25-Feb-2017.) |
| Ref | Expression |
|---|---|
| moimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
| Ref | Expression |
|---|---|
| moimdv | ⊢ (𝜑 → (∃*𝑥𝜒 → ∃*𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
| 2 | 1 | alrimiv 1926 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝜒)) |
| 3 | moim 2542 | . 2 ⊢ (∀𝑥(𝜓 → 𝜒) → (∃*𝑥𝜒 → ∃*𝑥𝜓)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃*𝑥𝜒 → ∃*𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 ∃*wmo 2536 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-mo 2538 |
| This theorem is referenced by: disjss1 5096 brdom6disj 10554 funressnfv 47013 funressnvmo 47015 |
| Copyright terms: Public domain | W3C validator |