Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > moimdv | Structured version Visualization version GIF version |
Description: The at-most-one quantifier reverses implication, deduction form. (Contributed by Thierry Arnoux, 25-Feb-2017.) |
Ref | Expression |
---|---|
moimdv.1 | ⊢ (𝜑 → (𝜓 → 𝜒)) |
Ref | Expression |
---|---|
moimdv | ⊢ (𝜑 → (∃*𝑥𝜒 → ∃*𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moimdv.1 | . . 3 ⊢ (𝜑 → (𝜓 → 𝜒)) | |
2 | 1 | alrimiv 1930 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → 𝜒)) |
3 | moim 2544 | . 2 ⊢ (∀𝑥(𝜓 → 𝜒) → (∃*𝑥𝜒 → ∃*𝑥𝜓)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃*𝑥𝜒 → ∃*𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-mo 2540 |
This theorem is referenced by: disjss1 5045 brdom6disj 10288 funressnfv 44537 funressnvmo 44539 |
Copyright terms: Public domain | W3C validator |