| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mobii | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for the at-most-one quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) Avoid ax-5 1910. (Revised by Wolf Lammen, 24-Sep-2023.) |
| Ref | Expression |
|---|---|
| mobii.1 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| mobii | ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mobii.1 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
| 2 | 1 | biimpri 228 | . . 3 ⊢ (𝜒 → 𝜓) |
| 3 | 2 | moimi 2538 | . 2 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜒) |
| 4 | 1 | biimpi 216 | . . 3 ⊢ (𝜓 → 𝜒) |
| 5 | 4 | moimi 2538 | . 2 ⊢ (∃*𝑥𝜒 → ∃*𝑥𝜓) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃*wmo 2531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-mo 2533 |
| This theorem is referenced by: eubii 2578 cbvmo 2597 moanmo 2615 2moswapv 2622 2moswap 2637 nulmo 2706 rmobiia 3360 rmoanidOLD 3366 rmov 3477 euxfr2w 3691 euxfr2 3693 rmoan 3710 reuxfrd 3719 2reu5lem2 3727 2rmoswap 3732 dffun9 6545 funopab 6551 funcnv2 6584 funcnv 6585 fun2cnv 6587 fncnv 6589 imadif 6600 fnres 6645 ov3 7552 oprabex3 7956 brdom6disj 10485 grothprim 10787 axaddf 11098 axmulf 11099 reuxfrdf 32420 rmoun 32423 funcnvmpt 32591 rmoeqi 36175 rmoeqbii 36176 nrmo 36398 alrmomorn 38340 cosscnvssid4 38468 dfeldisj4 38712 disjres 38736 tfsconcatlem 43325 euabsneu 47026 rmotru 48788 oppcthin 49424 indthinc 49448 prsthinc 49450 |
| Copyright terms: Public domain | W3C validator |