| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mobii | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for the at-most-one quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) Avoid ax-5 1910. (Revised by Wolf Lammen, 24-Sep-2023.) |
| Ref | Expression |
|---|---|
| mobii.1 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| mobii | ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mobii.1 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
| 2 | 1 | biimpri 228 | . . 3 ⊢ (𝜒 → 𝜓) |
| 3 | 2 | moimi 2538 | . 2 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜒) |
| 4 | 1 | biimpi 216 | . . 3 ⊢ (𝜓 → 𝜒) |
| 5 | 4 | moimi 2538 | . 2 ⊢ (∃*𝑥𝜒 → ∃*𝑥𝜓) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃*wmo 2531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-mo 2533 |
| This theorem is referenced by: eubii 2578 cbvmo 2597 moanmo 2615 2moswapv 2622 2moswap 2637 nulmo 2706 rmobiia 3349 rmoanidOLD 3355 rmov 3466 euxfr2w 3680 euxfr2 3682 rmoan 3699 reuxfrd 3708 2reu5lem2 3716 2rmoswap 3721 dffun9 6511 funopab 6517 funcnv2 6550 funcnv 6551 fun2cnv 6553 fncnv 6555 imadif 6566 fnres 6609 ov3 7512 oprabex3 7912 brdom6disj 10426 grothprim 10728 axaddf 11039 axmulf 11040 reuxfrdf 32435 rmoun 32438 funcnvmpt 32610 rmoeqi 36161 rmoeqbii 36162 nrmo 36384 alrmomorn 38326 cosscnvssid4 38454 dfeldisj4 38698 disjres 38722 tfsconcatlem 43309 sinnpoly 46875 euabsneu 47012 rmotru 48787 oppcthin 49423 indthinc 49447 prsthinc 49449 |
| Copyright terms: Public domain | W3C validator |