| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mobii | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for the at-most-one quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) Avoid ax-5 1910. (Revised by Wolf Lammen, 24-Sep-2023.) |
| Ref | Expression |
|---|---|
| mobii.1 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| mobii | ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mobii.1 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
| 2 | 1 | biimpri 228 | . . 3 ⊢ (𝜒 → 𝜓) |
| 3 | 2 | moimi 2538 | . 2 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜒) |
| 4 | 1 | biimpi 216 | . . 3 ⊢ (𝜓 → 𝜒) |
| 5 | 4 | moimi 2538 | . 2 ⊢ (∃*𝑥𝜒 → ∃*𝑥𝜓) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃*wmo 2531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-mo 2533 |
| This theorem is referenced by: eubii 2578 cbvmo 2597 moanmo 2615 2moswapv 2622 2moswap 2637 nulmo 2706 rmobiia 3357 rmoanidOLD 3363 rmov 3474 euxfr2w 3688 euxfr2 3690 rmoan 3707 reuxfrd 3716 2reu5lem2 3724 2rmoswap 3729 dffun9 6529 funopab 6535 funcnv2 6568 funcnv 6569 fun2cnv 6571 fncnv 6573 imadif 6584 fnres 6627 ov3 7532 oprabex3 7935 brdom6disj 10461 grothprim 10763 axaddf 11074 axmulf 11075 reuxfrdf 32393 rmoun 32396 funcnvmpt 32564 rmoeqi 36148 rmoeqbii 36149 nrmo 36371 alrmomorn 38313 cosscnvssid4 38441 dfeldisj4 38685 disjres 38709 tfsconcatlem 43298 sinnpoly 46865 euabsneu 47002 rmotru 48764 oppcthin 49400 indthinc 49424 prsthinc 49426 |
| Copyright terms: Public domain | W3C validator |