![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mobii | Structured version Visualization version GIF version |
Description: Formula-building rule for the at-most-one quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) Avoid ax-5 1913. (Revised by Wolf Lammen, 24-Sep-2023.) |
Ref | Expression |
---|---|
mobii.1 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
mobii | ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mobii.1 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
2 | 1 | biimpri 227 | . . 3 ⊢ (𝜒 → 𝜓) |
3 | 2 | moimi 2539 | . 2 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜒) |
4 | 1 | biimpi 215 | . . 3 ⊢ (𝜓 → 𝜒) |
5 | 4 | moimi 2539 | . 2 ⊢ (∃*𝑥𝜒 → ∃*𝑥𝜓) |
6 | 3, 5 | impbii 208 | 1 ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃*wmo 2532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 206 df-ex 1782 df-mo 2534 |
This theorem is referenced by: eubii 2579 cbvmowOLD 2598 cbvmo 2599 moanmo 2618 2moswapv 2625 2moswap 2640 nulmo 2708 rmobiia 3382 rmoanidOLD 3388 rmov 3501 euxfr2w 3716 euxfr2 3718 rmoan 3735 reuxfrd 3744 2reu5lem2 3752 2rmoswap 3757 dffun9 6577 funopab 6583 funcnv2 6616 funcnv 6617 fun2cnv 6619 fncnv 6621 imadif 6632 fnres 6677 ov3 7569 oprabex3 7963 brdom6disj 10526 grothprim 10828 axaddf 11139 axmulf 11140 reuxfrdf 31726 rmoun 31729 funcnvmpt 31887 nrmo 35290 alrmomorn 37222 cosscnvssid4 37342 dfeldisj4 37585 disjres 37609 tfsconcatlem 42076 euabsneu 45728 rmotru 47479 oppcthin 47649 indthinc 47662 prsthinc 47664 |
Copyright terms: Public domain | W3C validator |