![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mobii | Structured version Visualization version GIF version |
Description: Formula-building rule for the at-most-one quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) Avoid ax-5 1909. (Revised by Wolf Lammen, 24-Sep-2023.) |
Ref | Expression |
---|---|
mobii.1 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
mobii | ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mobii.1 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
2 | 1 | biimpri 228 | . . 3 ⊢ (𝜒 → 𝜓) |
3 | 2 | moimi 2548 | . 2 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜒) |
4 | 1 | biimpi 216 | . . 3 ⊢ (𝜓 → 𝜒) |
5 | 4 | moimi 2548 | . 2 ⊢ (∃*𝑥𝜒 → ∃*𝑥𝜓) |
6 | 3, 5 | impbii 209 | 1 ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∃*wmo 2541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-mo 2543 |
This theorem is referenced by: eubii 2588 cbvmo 2607 moanmo 2625 2moswapv 2632 2moswap 2647 nulmo 2716 rmobiia 3394 rmoanidOLD 3400 rmov 3519 euxfr2w 3742 euxfr2 3744 rmoan 3761 reuxfrd 3770 2reu5lem2 3778 2rmoswap 3783 dffun9 6607 funopab 6613 funcnv2 6646 funcnv 6647 fun2cnv 6649 fncnv 6651 imadif 6662 fnres 6707 ov3 7613 oprabex3 8018 brdom6disj 10601 grothprim 10903 axaddf 11214 axmulf 11215 reuxfrdf 32519 rmoun 32522 funcnvmpt 32685 rmoeqi 36151 rmoeqbii 36152 nrmo 36376 alrmomorn 38314 cosscnvssid4 38433 dfeldisj4 38676 disjres 38700 tfsconcatlem 43298 euabsneu 46943 rmotru 48536 oppcthin 48706 indthinc 48719 prsthinc 48721 |
Copyright terms: Public domain | W3C validator |