![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mobii | Structured version Visualization version GIF version |
Description: Formula-building rule for the at-most-one quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) Avoid ax-5 1914. (Revised by Wolf Lammen, 24-Sep-2023.) |
Ref | Expression |
---|---|
mobii.1 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
mobii | ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mobii.1 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
2 | 1 | biimpri 227 | . . 3 ⊢ (𝜒 → 𝜓) |
3 | 2 | moimi 2540 | . 2 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜒) |
4 | 1 | biimpi 215 | . . 3 ⊢ (𝜓 → 𝜒) |
5 | 4 | moimi 2540 | . 2 ⊢ (∃*𝑥𝜒 → ∃*𝑥𝜓) |
6 | 3, 5 | impbii 208 | 1 ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃*wmo 2533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-mo 2535 |
This theorem is referenced by: eubii 2580 cbvmowOLD 2599 cbvmo 2600 moanmo 2619 2moswapv 2626 2moswap 2641 nulmo 2709 rmobiia 3383 rmoanidOLD 3389 rmov 3502 euxfr2w 3717 euxfr2 3719 rmoan 3736 reuxfrd 3745 2reu5lem2 3753 2rmoswap 3758 dffun9 6578 funopab 6584 funcnv2 6617 funcnv 6618 fun2cnv 6620 fncnv 6622 imadif 6633 fnres 6678 ov3 7570 oprabex3 7964 brdom6disj 10527 grothprim 10829 axaddf 11140 axmulf 11141 reuxfrdf 31731 rmoun 31734 funcnvmpt 31892 nrmo 35295 alrmomorn 37227 cosscnvssid4 37347 dfeldisj4 37590 disjres 37614 tfsconcatlem 42086 euabsneu 45738 rmotru 47489 oppcthin 47659 indthinc 47672 prsthinc 47674 |
Copyright terms: Public domain | W3C validator |