| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mobii | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for the at-most-one quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) Avoid ax-5 1910. (Revised by Wolf Lammen, 24-Sep-2023.) |
| Ref | Expression |
|---|---|
| mobii.1 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| mobii | ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mobii.1 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
| 2 | 1 | biimpri 228 | . . 3 ⊢ (𝜒 → 𝜓) |
| 3 | 2 | moimi 2545 | . 2 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜒) |
| 4 | 1 | biimpi 216 | . . 3 ⊢ (𝜓 → 𝜒) |
| 5 | 4 | moimi 2545 | . 2 ⊢ (∃*𝑥𝜒 → ∃*𝑥𝜓) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃*wmo 2538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-mo 2540 |
| This theorem is referenced by: eubii 2585 cbvmo 2604 moanmo 2622 2moswapv 2629 2moswap 2644 nulmo 2713 rmobiia 3370 rmoanidOLD 3376 rmov 3495 euxfr2w 3708 euxfr2 3710 rmoan 3727 reuxfrd 3736 2reu5lem2 3744 2rmoswap 3749 dffun9 6570 funopab 6576 funcnv2 6609 funcnv 6610 fun2cnv 6612 fncnv 6614 imadif 6625 fnres 6670 ov3 7575 oprabex3 7981 brdom6disj 10551 grothprim 10853 axaddf 11164 axmulf 11165 reuxfrdf 32477 rmoun 32480 funcnvmpt 32650 rmoeqi 36210 rmoeqbii 36211 nrmo 36433 alrmomorn 38381 cosscnvssid4 38500 dfeldisj4 38743 disjres 38767 tfsconcatlem 43327 euabsneu 47024 rmotru 48749 oppcthin 49291 indthinc 49315 prsthinc 49317 |
| Copyright terms: Public domain | W3C validator |