Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mobii | Structured version Visualization version GIF version |
Description: Formula-building rule for the at-most-one quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) Avoid ax-5 1911. (Revised by Wolf Lammen, 24-Sep-2023.) |
Ref | Expression |
---|---|
mobii.1 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
mobii | ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mobii.1 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
2 | 1 | biimpri 227 | . . 3 ⊢ (𝜒 → 𝜓) |
3 | 2 | moimi 2543 | . 2 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜒) |
4 | 1 | biimpi 215 | . . 3 ⊢ (𝜓 → 𝜒) |
5 | 4 | moimi 2543 | . 2 ⊢ (∃*𝑥𝜒 → ∃*𝑥𝜓) |
6 | 3, 5 | impbii 208 | 1 ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃*wmo 2536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
This theorem depends on definitions: df-bi 206 df-ex 1780 df-mo 2538 |
This theorem is referenced by: eubii 2583 cbvmowOLD 2602 cbvmo 2603 moanmo 2622 2moswapv 2629 2moswap 2644 nulmo 2712 rmoanid 3311 rmobiia 3342 rmov 3464 euxfr2w 3660 euxfr2 3662 rmoan 3679 reuxfrd 3688 2reu5lem2 3696 2rmoswap 3701 dffun9 6492 funopab 6498 funcnv2 6531 funcnv 6532 fun2cnv 6534 fncnv 6536 imadif 6547 fnres 6590 ov3 7467 oprabex3 7852 brdom6disj 10334 grothprim 10636 axaddf 10947 axmulf 10948 reuxfrdf 30884 rmoun 30887 funcnvmpt 31049 nrmo 34644 alrmomorn 36532 cosscnvssid4 36637 dfeldisj4 36873 euabsneu 44580 rmotru 46208 oppcthin 46378 indthinc 46391 prsthinc 46393 |
Copyright terms: Public domain | W3C validator |