![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mobii | Structured version Visualization version GIF version |
Description: Formula-building rule for the at-most-one quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) Avoid ax-5 1908. (Revised by Wolf Lammen, 24-Sep-2023.) |
Ref | Expression |
---|---|
mobii.1 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
mobii | ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mobii.1 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
2 | 1 | biimpri 228 | . . 3 ⊢ (𝜒 → 𝜓) |
3 | 2 | moimi 2543 | . 2 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜒) |
4 | 1 | biimpi 216 | . . 3 ⊢ (𝜓 → 𝜒) |
5 | 4 | moimi 2543 | . 2 ⊢ (∃*𝑥𝜒 → ∃*𝑥𝜓) |
6 | 3, 5 | impbii 209 | 1 ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∃*wmo 2536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-ex 1777 df-mo 2538 |
This theorem is referenced by: eubii 2583 cbvmo 2602 moanmo 2620 2moswapv 2627 2moswap 2642 nulmo 2711 rmobiia 3384 rmoanidOLD 3390 rmov 3509 euxfr2w 3729 euxfr2 3731 rmoan 3748 reuxfrd 3757 2reu5lem2 3765 2rmoswap 3770 dffun9 6597 funopab 6603 funcnv2 6636 funcnv 6637 fun2cnv 6639 fncnv 6641 imadif 6652 fnres 6696 ov3 7596 oprabex3 8001 brdom6disj 10570 grothprim 10872 axaddf 11183 axmulf 11184 reuxfrdf 32519 rmoun 32522 funcnvmpt 32684 rmoeqi 36169 rmoeqbii 36170 nrmo 36393 alrmomorn 38340 cosscnvssid4 38459 dfeldisj4 38702 disjres 38726 tfsconcatlem 43326 euabsneu 46978 rmotru 48652 oppcthin 48839 indthinc 48853 prsthinc 48855 |
Copyright terms: Public domain | W3C validator |