| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mobii | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for the at-most-one quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) Avoid ax-5 1911. (Revised by Wolf Lammen, 24-Sep-2023.) |
| Ref | Expression |
|---|---|
| mobii.1 | ⊢ (𝜓 ↔ 𝜒) |
| Ref | Expression |
|---|---|
| mobii | ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mobii.1 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
| 2 | 1 | biimpri 228 | . . 3 ⊢ (𝜒 → 𝜓) |
| 3 | 2 | moimi 2540 | . 2 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜒) |
| 4 | 1 | biimpi 216 | . . 3 ⊢ (𝜓 → 𝜒) |
| 5 | 4 | moimi 2540 | . 2 ⊢ (∃*𝑥𝜒 → ∃*𝑥𝜓) |
| 6 | 3, 5 | impbii 209 | 1 ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃*wmo 2533 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-mo 2535 |
| This theorem is referenced by: eubii 2580 cbvmo 2599 moanmo 2617 2moswapv 2624 2moswap 2639 nulmo 2708 rmobiia 3352 rmov 3466 euxfr2w 3674 euxfr2 3676 rmoan 3693 reuxfrd 3702 2reu5lem2 3710 2rmoswap 3715 dffun9 6510 funopab 6516 funcnv2 6549 funcnv 6550 fun2cnv 6552 fncnv 6554 imadif 6565 fnres 6608 ov3 7509 oprabex3 7909 brdom6disj 10423 grothprim 10725 axaddf 11036 axmulf 11037 reuxfrdf 32470 rmoun 32473 funcnvmpt 32649 rmoeqi 36229 rmoeqbii 36230 nrmo 36452 alrmomorn 38394 cosscnvssid4 38522 dfeldisj4 38766 disjres 38790 tfsconcatlem 43377 sinnpoly 46930 euabsneu 47067 rmotru 48842 oppcthin 49478 indthinc 49502 prsthinc 49504 |
| Copyright terms: Public domain | W3C validator |