Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mobii | Structured version Visualization version GIF version |
Description: Formula-building rule for the at-most-one quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) Avoid ax-5 1916. (Revised by Wolf Lammen, 24-Sep-2023.) |
Ref | Expression |
---|---|
mobii.1 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
mobii | ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mobii.1 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
2 | 1 | biimpri 227 | . . 3 ⊢ (𝜒 → 𝜓) |
3 | 2 | moimi 2546 | . 2 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜒) |
4 | 1 | biimpi 215 | . . 3 ⊢ (𝜓 → 𝜒) |
5 | 4 | moimi 2546 | . 2 ⊢ (∃*𝑥𝜒 → ∃*𝑥𝜓) |
6 | 3, 5 | impbii 208 | 1 ⊢ (∃*𝑥𝜓 ↔ ∃*𝑥𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃*wmo 2539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 |
This theorem depends on definitions: df-bi 206 df-ex 1786 df-mo 2541 |
This theorem is referenced by: eubii 2586 cbvmowOLD 2605 cbvmo 2606 moanmo 2625 2moswapv 2632 2moswap 2647 nulmo 2715 rmoanid 3259 rmobiia 3328 rmov 3457 euxfr2w 3658 euxfr2 3660 rmoan 3677 reuxfrd 3686 2reu5lem2 3694 2rmoswap 3699 dffun9 6459 funopab 6465 funcnv2 6498 funcnv 6499 fun2cnv 6501 fncnv 6503 imadif 6514 fnres 6555 ov3 7426 oprabex3 7806 brdom6disj 10272 grothprim 10574 axaddf 10885 axmulf 10886 reuxfrdf 30818 rmoun 30821 funcnvmpt 30983 nrmo 34578 alrmomorn 36469 cosscnvssid4 36574 dfeldisj4 36810 euabsneu 44473 rmotru 46102 oppcthin 46272 indthinc 46285 prsthinc 46287 |
Copyright terms: Public domain | W3C validator |