MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mobii Structured version   Visualization version   GIF version

Theorem mobii 2549
Description: Formula-building rule for the at-most-one quantifier (inference form). (Contributed by NM, 9-Mar-1995.) (Revised by Mario Carneiro, 17-Oct-2016.) Avoid ax-5 1916. (Revised by Wolf Lammen, 24-Sep-2023.)
Hypothesis
Ref Expression
mobii.1 (𝜓𝜒)
Assertion
Ref Expression
mobii (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)

Proof of Theorem mobii
StepHypRef Expression
1 mobii.1 . . . 4 (𝜓𝜒)
21biimpri 227 . . 3 (𝜒𝜓)
32moimi 2546 . 2 (∃*𝑥𝜓 → ∃*𝑥𝜒)
41biimpi 215 . . 3 (𝜓𝜒)
54moimi 2546 . 2 (∃*𝑥𝜒 → ∃*𝑥𝜓)
63, 5impbii 208 1 (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)
Colors of variables: wff setvar class
Syntax hints:  wb 205  ∃*wmo 2539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815
This theorem depends on definitions:  df-bi 206  df-ex 1786  df-mo 2541
This theorem is referenced by:  eubii  2586  cbvmowOLD  2605  cbvmo  2606  moanmo  2625  2moswapv  2632  2moswap  2647  nulmo  2715  rmoanid  3259  rmobiia  3328  rmov  3457  euxfr2w  3658  euxfr2  3660  rmoan  3677  reuxfrd  3686  2reu5lem2  3694  2rmoswap  3699  dffun9  6459  funopab  6465  funcnv2  6498  funcnv  6499  fun2cnv  6501  fncnv  6503  imadif  6514  fnres  6555  ov3  7426  oprabex3  7806  brdom6disj  10272  grothprim  10574  axaddf  10885  axmulf  10886  reuxfrdf  30818  rmoun  30821  funcnvmpt  30983  nrmo  34578  alrmomorn  36469  cosscnvssid4  36574  dfeldisj4  36810  euabsneu  44473  rmotru  46102  oppcthin  46272  indthinc  46285  prsthinc  46287
  Copyright terms: Public domain W3C validator