![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mobidv | Structured version Visualization version GIF version |
Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
mobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mobidv | ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mobidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1926 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | mobi 2550 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∃*wmo 2541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-mo 2543 |
This theorem is referenced by: moanimv 2622 rmobidva 3403 rmoeq1OLD 3427 mosubopt 5529 dffun6f 6591 funmo 6593 funmoOLD 6594 caovmo 7687 1stconst 8141 2ndconst 8142 brdom3 10597 brdom6disj 10601 imasaddfnlem 17588 imasvscafn 17597 hausflim 24010 hausflf 24026 cnextfun 24093 haustsms 24165 limcmo 25937 perfdvf 25958 rmounid 32523 rmoeqbidv 36177 disjeq12dv 36181 phpreu 37564 alrmomodm 38315 funressnfv 46958 funressnmo 46961 mosn 48544 mof02 48552 mofsn2 48558 f1omo 48574 isthinc 48688 isthincd2lem1 48694 thincmoALT 48697 thincmod 48698 isthincd 48704 setcthin 48722 |
Copyright terms: Public domain | W3C validator |