![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mobidv | Structured version Visualization version GIF version |
Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
mobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mobidv | ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mobidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1930 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | mobi 2541 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 ∃*wmo 2532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-mo 2534 |
This theorem is referenced by: moanimv 2615 rmobidva 3391 rmoeq1OLD 3416 mosubopt 5510 dffun6f 6561 funmo 6563 funmoOLD 6564 caovmo 7646 1stconst 8088 2ndconst 8089 brdom3 10525 brdom6disj 10529 imasaddfnlem 17478 imasvscafn 17487 hausflim 23705 hausflf 23721 cnextfun 23788 haustsms 23860 limcmo 25623 perfdvf 25644 rmounid 31990 phpreu 36775 alrmomodm 37531 funressnfv 46052 funressnmo 46055 mosn 47585 mof02 47593 mofsn2 47599 f1omo 47615 isthinc 47729 isthincd2lem1 47735 thincmoALT 47738 thincmod 47739 isthincd 47745 setcthin 47763 |
Copyright terms: Public domain | W3C validator |