| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mobidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| mobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mobidv | ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mobidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1928 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 3 | mobi 2544 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∃*wmo 2535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-mo 2537 |
| This theorem is referenced by: moanimv 2616 rmobidva 3360 rmoeq1OLD 3380 mosubopt 5453 dffun6f 6501 funmo 6502 caovmo 7589 1stconst 8036 2ndconst 8037 brdom3 10426 brdom6disj 10430 imasaddfnlem 17434 imasvscafn 17443 hausflim 23897 hausflf 23913 cnextfun 23980 haustsms 24052 limcmo 25811 perfdvf 25832 rmounid 32476 rmoeqbidv 36278 disjeq12dv 36280 phpreu 37664 alrmomodm 38411 funressnfv 47167 funressnmo 47170 mosn 48937 mof02 48963 mofsn2 48969 f1omo 49017 f1omoOLD 49018 isthinc 49544 isthincd2lem1 49550 thincmoALT 49554 thincmod 49555 isthincd 49561 thincpropd 49567 indcthing 49585 discthing 49586 setcthin 49590 |
| Copyright terms: Public domain | W3C validator |