| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mobidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| mobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mobidv | ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mobidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 3 | mobi 2546 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃*wmo 2537 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2539 |
| This theorem is referenced by: moanimv 2618 rmobidva 3374 rmoeq1OLD 3397 mosubopt 5485 dffun6f 6549 funmo 6551 funmoOLD 6552 caovmo 7644 1stconst 8099 2ndconst 8100 brdom3 10542 brdom6disj 10546 imasaddfnlem 17542 imasvscafn 17551 hausflim 23919 hausflf 23935 cnextfun 24002 haustsms 24074 limcmo 25835 perfdvf 25856 rmounid 32476 rmoeqbidv 36231 disjeq12dv 36233 phpreu 37628 alrmomodm 38377 funressnfv 47072 funressnmo 47075 mosn 48791 mof02 48817 mofsn2 48823 f1omo 48868 isthinc 49305 isthincd2lem1 49311 thincmoALT 49315 thincmod 49316 isthincd 49322 thincpropd 49328 indcthing 49346 discthing 49347 setcthin 49351 |
| Copyright terms: Public domain | W3C validator |