| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mobidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| mobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mobidv | ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mobidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 3 | mobi 2540 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃*wmo 2531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 |
| This theorem is referenced by: moanimv 2612 rmobidva 3369 rmoeq1OLD 3389 mosubopt 5470 dffun6f 6529 funmo 6531 funmoOLD 6532 caovmo 7626 1stconst 8079 2ndconst 8080 brdom3 10481 brdom6disj 10485 imasaddfnlem 17491 imasvscafn 17500 hausflim 23868 hausflf 23884 cnextfun 23951 haustsms 24023 limcmo 25783 perfdvf 25804 rmounid 32424 rmoeqbidv 36201 disjeq12dv 36203 phpreu 37598 alrmomodm 38341 funressnfv 47044 funressnmo 47047 mosn 48801 mof02 48827 mofsn2 48833 f1omo 48881 f1omoOLD 48882 isthinc 49408 isthincd2lem1 49414 thincmoALT 49418 thincmod 49419 isthincd 49425 thincpropd 49431 indcthing 49449 discthing 49450 setcthin 49454 |
| Copyright terms: Public domain | W3C validator |