| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mobidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| mobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mobidv | ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mobidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1928 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 3 | mobi 2542 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 ∃*wmo 2533 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-mo 2535 |
| This theorem is referenced by: moanimv 2614 rmobidva 3359 rmoeq1OLD 3379 mosubopt 5450 dffun6f 6496 funmo 6497 caovmo 7583 1stconst 8030 2ndconst 8031 brdom3 10416 brdom6disj 10420 imasaddfnlem 17429 imasvscafn 17438 hausflim 23894 hausflf 23910 cnextfun 23977 haustsms 24049 limcmo 25808 perfdvf 25829 rmounid 32469 rmoeqbidv 36246 disjeq12dv 36248 phpreu 37643 alrmomodm 38386 funressnfv 47073 funressnmo 47076 mosn 48843 mof02 48869 mofsn2 48875 f1omo 48923 f1omoOLD 48924 isthinc 49450 isthincd2lem1 49456 thincmoALT 49460 thincmod 49461 isthincd 49467 thincpropd 49473 indcthing 49491 discthing 49492 setcthin 49496 |
| Copyright terms: Public domain | W3C validator |