Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mobidv | Structured version Visualization version GIF version |
Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
mobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mobidv | ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mobidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1930 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | mobi 2547 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-mo 2540 |
This theorem is referenced by: moanimv 2621 rmobidva 3327 rmoeq1 3345 mosubopt 5424 dffun6f 6448 funmo 6450 caovmo 7509 1stconst 7940 2ndconst 7941 brdom3 10284 brdom6disj 10288 imasaddfnlem 17239 imasvscafn 17248 hausflim 23132 hausflf 23148 cnextfun 23215 haustsms 23287 limcmo 25046 perfdvf 25067 rmounid 30843 phpreu 35761 alrmomodm 36491 funressnfv 44537 funressnmo 44540 mosn 46158 mof02 46166 mofsn2 46172 f1omo 46188 isthinc 46302 isthincd2lem1 46308 thincmoALT 46311 thincmod 46312 isthincd 46318 setcthin 46336 |
Copyright terms: Public domain | W3C validator |