![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mobidv | Structured version Visualization version GIF version |
Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
mobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mobidv | ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mobidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1925 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | mobi 2545 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 ∃*wmo 2536 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-mo 2538 |
This theorem is referenced by: moanimv 2617 rmobidva 3393 rmoeq1OLD 3416 mosubopt 5520 dffun6f 6581 funmo 6583 funmoOLD 6584 caovmo 7670 1stconst 8124 2ndconst 8125 brdom3 10566 brdom6disj 10570 imasaddfnlem 17575 imasvscafn 17584 hausflim 24005 hausflf 24021 cnextfun 24088 haustsms 24160 limcmo 25932 perfdvf 25953 rmounid 32523 rmoeqbidv 36195 disjeq12dv 36198 phpreu 37591 alrmomodm 38341 funressnfv 46993 funressnmo 46996 mosn 48661 mof02 48669 mofsn2 48675 f1omo 48691 isthinc 48821 isthincd2lem1 48827 thincmoALT 48830 thincmod 48831 isthincd 48837 setcthin 48856 |
Copyright terms: Public domain | W3C validator |