MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mobidv Structured version   Visualization version   GIF version

Theorem mobidv 2547
Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.)
Hypothesis
Ref Expression
mobidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
mobidv (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem mobidv
StepHypRef Expression
1 mobidv.1 . . 3 (𝜑 → (𝜓𝜒))
21alrimiv 1925 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
3 mobi 2545 . 2 (∀𝑥(𝜓𝜒) → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
42, 3syl 17 1 (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  ∃*wmo 2536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1777  df-mo 2538
This theorem is referenced by:  moanimv  2617  rmobidva  3393  rmoeq1OLD  3416  mosubopt  5520  dffun6f  6581  funmo  6583  funmoOLD  6584  caovmo  7670  1stconst  8124  2ndconst  8125  brdom3  10566  brdom6disj  10570  imasaddfnlem  17575  imasvscafn  17584  hausflim  24005  hausflf  24021  cnextfun  24088  haustsms  24160  limcmo  25932  perfdvf  25953  rmounid  32523  rmoeqbidv  36195  disjeq12dv  36198  phpreu  37591  alrmomodm  38341  funressnfv  46993  funressnmo  46996  mosn  48661  mof02  48669  mofsn2  48675  f1omo  48691  isthinc  48821  isthincd2lem1  48827  thincmoALT  48830  thincmod  48831  isthincd  48837  setcthin  48856
  Copyright terms: Public domain W3C validator