MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mobidv Structured version   Visualization version   GIF version

Theorem mobidv 2543
Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.)
Hypothesis
Ref Expression
mobidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
mobidv (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem mobidv
StepHypRef Expression
1 mobidv.1 . . 3 (𝜑 → (𝜓𝜒))
21alrimiv 1927 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
3 mobi 2541 . 2 (∀𝑥(𝜓𝜒) → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
42, 3syl 17 1 (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  ∃*wmo 2532
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-mo 2534
This theorem is referenced by:  moanimv  2613  rmobidva  3371  rmoeq1OLD  3392  mosubopt  5473  dffun6f  6532  funmo  6534  funmoOLD  6535  caovmo  7629  1stconst  8082  2ndconst  8083  brdom3  10488  brdom6disj  10492  imasaddfnlem  17498  imasvscafn  17507  hausflim  23875  hausflf  23891  cnextfun  23958  haustsms  24030  limcmo  25790  perfdvf  25811  rmounid  32431  rmoeqbidv  36208  disjeq12dv  36210  phpreu  37605  alrmomodm  38348  funressnfv  47048  funressnmo  47051  mosn  48805  mof02  48831  mofsn2  48837  f1omo  48885  f1omoOLD  48886  isthinc  49412  isthincd2lem1  49418  thincmoALT  49422  thincmod  49423  isthincd  49429  thincpropd  49435  indcthing  49453  discthing  49454  setcthin  49458
  Copyright terms: Public domain W3C validator