Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mobidv | Structured version Visualization version GIF version |
Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
mobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mobidv | ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mobidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1931 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | mobi 2547 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 ∃*wmo 2538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-mo 2540 |
This theorem is referenced by: moanimv 2621 rmoeq1 3336 mosubopt 5418 dffun6f 6432 funmo 6434 caovmo 7487 1stconst 7911 2ndconst 7912 brdom3 10215 brdom6disj 10219 imasaddfnlem 17156 imasvscafn 17165 hausflim 23040 hausflf 23056 cnextfun 23123 haustsms 23195 limcmo 24951 perfdvf 24972 rmounid 30744 phpreu 35688 alrmomodm 36418 funressnfv 44424 funressnmo 44427 mosn 46046 mof02 46054 mofsn2 46060 f1omo 46076 isthinc 46190 isthincd2lem1 46196 thincmoALT 46199 thincmod 46200 isthincd 46206 setcthin 46224 |
Copyright terms: Public domain | W3C validator |