| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mobidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| mobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mobidv | ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mobidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 3 | mobi 2541 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃*wmo 2532 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2534 |
| This theorem is referenced by: moanimv 2613 rmobidva 3371 rmoeq1OLD 3392 mosubopt 5473 dffun6f 6532 funmo 6534 funmoOLD 6535 caovmo 7629 1stconst 8082 2ndconst 8083 brdom3 10488 brdom6disj 10492 imasaddfnlem 17498 imasvscafn 17507 hausflim 23875 hausflf 23891 cnextfun 23958 haustsms 24030 limcmo 25790 perfdvf 25811 rmounid 32431 rmoeqbidv 36208 disjeq12dv 36210 phpreu 37605 alrmomodm 38348 funressnfv 47048 funressnmo 47051 mosn 48805 mof02 48831 mofsn2 48837 f1omo 48885 f1omoOLD 48886 isthinc 49412 isthincd2lem1 49418 thincmoALT 49422 thincmod 49423 isthincd 49429 thincpropd 49435 indcthing 49453 discthing 49454 setcthin 49458 |
| Copyright terms: Public domain | W3C validator |