![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mobidv | Structured version Visualization version GIF version |
Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
Ref | Expression |
---|---|
mobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
mobidv | ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mobidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | 1 | alrimiv 1931 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
3 | mobi 2542 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | |
4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1540 ∃*wmo 2533 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-mo 2535 |
This theorem is referenced by: moanimv 2616 rmobidva 3392 rmoeq1OLD 3417 mosubopt 5511 dffun6f 6562 funmo 6564 funmoOLD 6565 caovmo 7644 1stconst 8086 2ndconst 8087 brdom3 10523 brdom6disj 10527 imasaddfnlem 17474 imasvscafn 17483 hausflim 23485 hausflf 23501 cnextfun 23568 haustsms 23640 limcmo 25399 perfdvf 25420 rmounid 31735 phpreu 36472 alrmomodm 37228 funressnfv 45753 funressnmo 45756 mosn 47497 mof02 47505 mofsn2 47511 f1omo 47527 isthinc 47641 isthincd2lem1 47647 thincmoALT 47650 thincmod 47651 isthincd 47657 setcthin 47675 |
Copyright terms: Public domain | W3C validator |