| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mobidv | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.) |
| Ref | Expression |
|---|---|
| mobidv.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mobidv | ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mobidv.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | alrimiv 1927 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 ↔ 𝜒)) |
| 3 | mobi 2540 | . 2 ⊢ (∀𝑥(𝜓 ↔ 𝜒) → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∃*wmo 2531 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2533 |
| This theorem is referenced by: moanimv 2612 rmobidva 3360 rmoeq1OLD 3380 mosubopt 5457 dffun6f 6501 funmo 6502 caovmo 7590 1stconst 8040 2ndconst 8041 brdom3 10441 brdom6disj 10445 imasaddfnlem 17450 imasvscafn 17459 hausflim 23884 hausflf 23900 cnextfun 23967 haustsms 24039 limcmo 25799 perfdvf 25820 rmounid 32457 rmoeqbidv 36186 disjeq12dv 36188 phpreu 37583 alrmomodm 38326 funressnfv 47028 funressnmo 47031 mosn 48798 mof02 48824 mofsn2 48830 f1omo 48878 f1omoOLD 48879 isthinc 49405 isthincd2lem1 49411 thincmoALT 49415 thincmod 49416 isthincd 49422 thincpropd 49428 indcthing 49446 discthing 49447 setcthin 49451 |
| Copyright terms: Public domain | W3C validator |