MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mobidv Structured version   Visualization version   GIF version

Theorem mobidv 2544
Description: Formula-building rule for the at-most-one quantifier (deduction form). (Contributed by Mario Carneiro, 7-Oct-2016.) Reduce axiom dependencies and shorten proof. (Revised by BJ, 7-Oct-2022.)
Hypothesis
Ref Expression
mobidv.1 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
mobidv (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem mobidv
StepHypRef Expression
1 mobidv.1 . . 3 (𝜑 → (𝜓𝜒))
21alrimiv 1931 . 2 (𝜑 → ∀𝑥(𝜓𝜒))
3 mobi 2542 . 2 (∀𝑥(𝜓𝜒) → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
42, 3syl 17 1 (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1540  ∃*wmo 2533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-mo 2535
This theorem is referenced by:  moanimv  2616  rmobidva  3392  rmoeq1OLD  3417  mosubopt  5511  dffun6f  6562  funmo  6564  funmoOLD  6565  caovmo  7644  1stconst  8086  2ndconst  8087  brdom3  10523  brdom6disj  10527  imasaddfnlem  17474  imasvscafn  17483  hausflim  23485  hausflf  23501  cnextfun  23568  haustsms  23640  limcmo  25399  perfdvf  25420  rmounid  31735  phpreu  36472  alrmomodm  37228  funressnfv  45753  funressnmo  45756  mosn  47497  mof02  47505  mofsn2  47511  f1omo  47527  isthinc  47641  isthincd2lem1  47647  thincmoALT  47650  thincmod  47651  isthincd  47657  setcthin  47675
  Copyright terms: Public domain W3C validator