|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > mpteq1iOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of mpteq1i 5237 as of 15-Nov-2024. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| mpteq1i.1 | ⊢ 𝐴 = 𝐵 | 
| Ref | Expression | 
|---|---|
| mpteq1iOLD | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | mpteq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | mpteq1 5234 | . 2 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: = wceq 1539 ↦ cmpt 5224 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-opab 5205 df-mpt 5225 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |