MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq1iOLD Structured version   Visualization version   GIF version

Theorem mpteq1iOLD 5166
Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
mpteq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
mpteq1iOLD (𝑥𝐴𝐶) = (𝑥𝐵𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem mpteq1iOLD
StepHypRef Expression
1 mpteq1i.1 . 2 𝐴 = 𝐵
2 mpteq1 5162 . 2 (𝐴 = 𝐵 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
31, 2ax-mp 5 1 (𝑥𝐴𝐶) = (𝑥𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1543  cmpt 5152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788  df-sb 2073  df-clab 2717  df-cleq 2731  df-clel 2818  df-opab 5133  df-mpt 5153
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator