MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq1iOLD Structured version   Visualization version   GIF version

Theorem mpteq1iOLD 5238
Description: Obsolete version of mpteq1i 5237 as of 15-Nov-2024. (Contributed by Glauco Siliprandi, 17-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
mpteq1i.1 𝐴 = 𝐵
Assertion
Ref Expression
mpteq1iOLD (𝑥𝐴𝐶) = (𝑥𝐵𝐶)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem mpteq1iOLD
StepHypRef Expression
1 mpteq1i.1 . 2 𝐴 = 𝐵
2 mpteq1 5234 . 2 (𝐴 = 𝐵 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
31, 2ax-mp 5 1 (𝑥𝐴𝐶) = (𝑥𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cmpt 5224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-opab 5205  df-mpt 5225
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator