| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-opab | Structured version Visualization version GIF version | ||
| Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition does not require it (see dfid2 5550 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 8049. An example is given by ex-opab 30359. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-opab | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | 1, 2, 3 | copab 5181 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝜑} |
| 5 | vz | . . . . . . . 8 setvar 𝑧 | |
| 6 | 5 | cv 1539 | . . . . . . 7 class 𝑧 |
| 7 | 2 | cv 1539 | . . . . . . . 8 class 𝑥 |
| 8 | 3 | cv 1539 | . . . . . . . 8 class 𝑦 |
| 9 | 7, 8 | cop 4607 | . . . . . . 7 class 〈𝑥, 𝑦〉 |
| 10 | 6, 9 | wceq 1540 | . . . . . 6 wff 𝑧 = 〈𝑥, 𝑦〉 |
| 11 | 10, 1 | wa 395 | . . . . 5 wff (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 12 | 11, 3 | wex 1779 | . . . 4 wff ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 13 | 12, 2 | wex 1779 | . . 3 wff ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 14 | 13, 5 | cab 2713 | . 2 class {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| 15 | 4, 14 | wceq 1540 | 1 wff {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: opabss 5183 opabbid 5184 opabbidv 5185 nfopabd 5187 nfopab1 5189 nfopab2 5190 cbvopab 5191 cbvopabv 5192 cbvopab1 5193 cbvopab1g 5194 cbvopab2 5195 cbvopab1s 5196 cbvopab1v 5197 cbvopab2v 5199 unopab 5200 opabidw 5499 opabid 5500 elopabw 5501 ssopab2 5521 iunopab 5534 iunopabOLD 5535 dfid2 5550 dfid3 5551 elxpi 5676 opabssxpd 5701 rabxp 5702 csbxp 5754 ssrelOLD 5762 relopabi 5801 relopabiALT 5802 cnv0 6129 dfoprab2 7463 dmoprab 7508 dfopab2 8049 brdom7disj 10543 brdom6disj 10544 opabssi 32539 cbvopab1davw 36228 cbvopab2davw 36229 cbvopabdavw 36230 bj-dfid2ALT 37029 rnxrn 38362 dropab1 44419 dropab2 44420 csbxpgVD 44866 relopabVD 44873 |
| Copyright terms: Public domain | W3C validator |