| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-opab | Structured version Visualization version GIF version | ||
| Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition does not require it (see dfid2 5513 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 7984. An example is given by ex-opab 30407. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-opab | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | 1, 2, 3 | copab 5153 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝜑} |
| 5 | vz | . . . . . . . 8 setvar 𝑧 | |
| 6 | 5 | cv 1540 | . . . . . . 7 class 𝑧 |
| 7 | 2 | cv 1540 | . . . . . . . 8 class 𝑥 |
| 8 | 3 | cv 1540 | . . . . . . . 8 class 𝑦 |
| 9 | 7, 8 | cop 4582 | . . . . . . 7 class 〈𝑥, 𝑦〉 |
| 10 | 6, 9 | wceq 1541 | . . . . . 6 wff 𝑧 = 〈𝑥, 𝑦〉 |
| 11 | 10, 1 | wa 395 | . . . . 5 wff (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 12 | 11, 3 | wex 1780 | . . . 4 wff ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 13 | 12, 2 | wex 1780 | . . 3 wff ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 14 | 13, 5 | cab 2709 | . 2 class {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| 15 | 4, 14 | wceq 1541 | 1 wff {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: opabss 5155 opabbid 5156 opabbidv 5157 nfopabd 5159 nfopab1 5161 nfopab2 5162 cbvopab 5163 cbvopabv 5164 cbvopab1 5165 cbvopab1g 5166 cbvopab2 5167 cbvopab1s 5168 cbvopab1v 5169 cbvopab2v 5170 unopab 5171 opabidw 5464 opabid 5465 elopabw 5466 ssopab2 5486 iunopab 5499 dfid2 5513 dfid3 5514 elxpi 5638 opabssxpd 5663 rabxp 5664 csbxp 5716 relopabi 5762 relopabiALT 5763 cnv0 6087 dfoprab2 7404 dmoprab 7449 dfopab2 7984 brdom7disj 10419 brdom6disj 10420 opabssi 32591 cbvopab1davw 36297 cbvopab2davw 36298 cbvopabdavw 36299 bj-dfid2ALT 37098 rnxrn 38429 dropab1 44478 dropab2 44479 csbxpgVD 44925 relopabVD 44932 |
| Copyright terms: Public domain | W3C validator |