| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-opab | Structured version Visualization version GIF version | ||
| Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition does not require it (see dfid2 5520 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 7994. An example is given by ex-opab 30394. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-opab | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | 1, 2, 3 | copab 5157 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝜑} |
| 5 | vz | . . . . . . . 8 setvar 𝑧 | |
| 6 | 5 | cv 1539 | . . . . . . 7 class 𝑧 |
| 7 | 2 | cv 1539 | . . . . . . . 8 class 𝑥 |
| 8 | 3 | cv 1539 | . . . . . . . 8 class 𝑦 |
| 9 | 7, 8 | cop 4585 | . . . . . . 7 class 〈𝑥, 𝑦〉 |
| 10 | 6, 9 | wceq 1540 | . . . . . 6 wff 𝑧 = 〈𝑥, 𝑦〉 |
| 11 | 10, 1 | wa 395 | . . . . 5 wff (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 12 | 11, 3 | wex 1779 | . . . 4 wff ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 13 | 12, 2 | wex 1779 | . . 3 wff ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 14 | 13, 5 | cab 2707 | . 2 class {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| 15 | 4, 14 | wceq 1540 | 1 wff {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: opabss 5159 opabbid 5160 opabbidv 5161 nfopabd 5163 nfopab1 5165 nfopab2 5166 cbvopab 5167 cbvopabv 5168 cbvopab1 5169 cbvopab1g 5170 cbvopab2 5171 cbvopab1s 5172 cbvopab1v 5173 cbvopab2v 5174 unopab 5175 opabidw 5471 opabid 5472 elopabw 5473 ssopab2 5493 iunopab 5506 dfid2 5520 dfid3 5521 elxpi 5645 opabssxpd 5670 rabxp 5671 csbxp 5723 relopabi 5769 relopabiALT 5770 cnv0 6093 dfoprab2 7411 dmoprab 7456 dfopab2 7994 brdom7disj 10444 brdom6disj 10445 opabssi 32574 cbvopab1davw 36237 cbvopab2davw 36238 cbvopabdavw 36239 bj-dfid2ALT 37038 rnxrn 38369 dropab1 44420 dropab2 44421 csbxpgVD 44867 relopabVD 44874 |
| Copyright terms: Public domain | W3C validator |