![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-opab | Structured version Visualization version GIF version |
Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition does not require it (see dfid2 5576 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 8040. An example is given by ex-opab 29940. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
df-opab | ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | 1, 2, 3 | copab 5210 | . 2 class {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
5 | vz | . . . . . . . 8 setvar 𝑧 | |
6 | 5 | cv 1540 | . . . . . . 7 class 𝑧 |
7 | 2 | cv 1540 | . . . . . . . 8 class 𝑥 |
8 | 3 | cv 1540 | . . . . . . . 8 class 𝑦 |
9 | 7, 8 | cop 4634 | . . . . . . 7 class ⟨𝑥, 𝑦⟩ |
10 | 6, 9 | wceq 1541 | . . . . . 6 wff 𝑧 = ⟨𝑥, 𝑦⟩ |
11 | 10, 1 | wa 396 | . . . . 5 wff (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) |
12 | 11, 3 | wex 1781 | . . . 4 wff ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) |
13 | 12, 2 | wex 1781 | . . 3 wff ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) |
14 | 13, 5 | cab 2709 | . 2 class {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} |
15 | 4, 14 | wceq 1541 | 1 wff {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} |
Colors of variables: wff setvar class |
This definition is referenced by: opabss 5212 opabbid 5213 opabbidv 5214 nfopabd 5216 nfopab1 5218 nfopab2 5219 cbvopab 5220 cbvopabv 5221 cbvopab1 5223 cbvopab1g 5224 cbvopab2 5225 cbvopab1s 5226 cbvopab1v 5227 cbvopab2v 5229 unopab 5230 opabidw 5524 opabid 5525 elopabw 5526 ssopab2 5546 iunopab 5559 iunopabOLD 5560 dfid2 5576 dfid3 5577 elxpi 5698 opabssxpd 5723 rabxp 5724 csbxp 5775 ssrelOLD 5783 relopabi 5822 relopabiALT 5823 cnv0 6140 dfoprab2 7469 dmoprab 7512 dfopab2 8040 brdom7disj 10528 brdom6disj 10529 opabssi 32097 cnvoprabOLD 32200 bj-dfid2ALT 36249 rnxrn 37571 dropab1 43508 dropab2 43509 csbxpgVD 43957 relopabVD 43964 |
Copyright terms: Public domain | W3C validator |