| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-opab | Structured version Visualization version GIF version | ||
| Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition does not require it (see dfid2 5538 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 8034. An example is given by ex-opab 30368. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-opab | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | 1, 2, 3 | copab 5172 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝜑} |
| 5 | vz | . . . . . . . 8 setvar 𝑧 | |
| 6 | 5 | cv 1539 | . . . . . . 7 class 𝑧 |
| 7 | 2 | cv 1539 | . . . . . . . 8 class 𝑥 |
| 8 | 3 | cv 1539 | . . . . . . . 8 class 𝑦 |
| 9 | 7, 8 | cop 4598 | . . . . . . 7 class 〈𝑥, 𝑦〉 |
| 10 | 6, 9 | wceq 1540 | . . . . . 6 wff 𝑧 = 〈𝑥, 𝑦〉 |
| 11 | 10, 1 | wa 395 | . . . . 5 wff (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 12 | 11, 3 | wex 1779 | . . . 4 wff ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 13 | 12, 2 | wex 1779 | . . 3 wff ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 14 | 13, 5 | cab 2708 | . 2 class {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| 15 | 4, 14 | wceq 1540 | 1 wff {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: opabss 5174 opabbid 5175 opabbidv 5176 nfopabd 5178 nfopab1 5180 nfopab2 5181 cbvopab 5182 cbvopabv 5183 cbvopab1 5184 cbvopab1g 5185 cbvopab2 5186 cbvopab1s 5187 cbvopab1v 5188 cbvopab2v 5189 unopab 5190 opabidw 5487 opabid 5488 elopabw 5489 ssopab2 5509 iunopab 5522 iunopabOLD 5523 dfid2 5538 dfid3 5539 elxpi 5663 opabssxpd 5688 rabxp 5689 csbxp 5741 ssrelOLD 5749 relopabi 5788 relopabiALT 5789 cnv0 6116 dfoprab2 7450 dmoprab 7495 dfopab2 8034 brdom7disj 10491 brdom6disj 10492 opabssi 32548 cbvopab1davw 36259 cbvopab2davw 36260 cbvopabdavw 36261 bj-dfid2ALT 37060 rnxrn 38391 dropab1 44443 dropab2 44444 csbxpgVD 44890 relopabVD 44897 |
| Copyright terms: Public domain | W3C validator |