| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-opab | Structured version Visualization version GIF version | ||
| Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition does not require it (see dfid2 5516 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 7990. An example is given by ex-opab 30414. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-opab | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | 1, 2, 3 | copab 5155 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝜑} |
| 5 | vz | . . . . . . . 8 setvar 𝑧 | |
| 6 | 5 | cv 1540 | . . . . . . 7 class 𝑧 |
| 7 | 2 | cv 1540 | . . . . . . . 8 class 𝑥 |
| 8 | 3 | cv 1540 | . . . . . . . 8 class 𝑦 |
| 9 | 7, 8 | cop 4581 | . . . . . . 7 class 〈𝑥, 𝑦〉 |
| 10 | 6, 9 | wceq 1541 | . . . . . 6 wff 𝑧 = 〈𝑥, 𝑦〉 |
| 11 | 10, 1 | wa 395 | . . . . 5 wff (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 12 | 11, 3 | wex 1780 | . . . 4 wff ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 13 | 12, 2 | wex 1780 | . . 3 wff ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 14 | 13, 5 | cab 2711 | . 2 class {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| 15 | 4, 14 | wceq 1541 | 1 wff {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: opabss 5157 opabbid 5158 opabbidv 5159 nfopabd 5161 nfopab1 5163 nfopab2 5164 cbvopab 5165 cbvopabv 5166 cbvopab1 5167 cbvopab1g 5168 cbvopab2 5169 cbvopab1s 5170 cbvopab1v 5171 cbvopab2v 5172 unopab 5173 opabidw 5467 opabid 5468 elopabw 5469 ssopab2 5489 iunopab 5502 dfid2 5516 dfid3 5517 elxpi 5641 opabssxpd 5666 rabxp 5667 csbxp 5720 relopabi 5766 relopabiALT 5767 cnv0OLD 6092 dfoprab2 7410 dmoprab 7455 dfopab2 7990 brdom7disj 10429 brdom6disj 10430 opabssi 32598 cbvopab1davw 36329 cbvopab2davw 36330 cbvopabdavw 36331 bj-dfid2ALT 37130 rnxrn 38465 dropab1 44563 dropab2 44564 csbxpgVD 45010 relopabVD 45017 |
| Copyright terms: Public domain | W3C validator |