Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-opab | Structured version Visualization version GIF version |
Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition does not require it (see dfid2 5482 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 7865. An example is given by ex-opab 28697. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
df-opab | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | 1, 2, 3 | copab 5132 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝜑} |
5 | vz | . . . . . . . 8 setvar 𝑧 | |
6 | 5 | cv 1538 | . . . . . . 7 class 𝑧 |
7 | 2 | cv 1538 | . . . . . . . 8 class 𝑥 |
8 | 3 | cv 1538 | . . . . . . . 8 class 𝑦 |
9 | 7, 8 | cop 4564 | . . . . . . 7 class 〈𝑥, 𝑦〉 |
10 | 6, 9 | wceq 1539 | . . . . . 6 wff 𝑧 = 〈𝑥, 𝑦〉 |
11 | 10, 1 | wa 395 | . . . . 5 wff (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
12 | 11, 3 | wex 1783 | . . . 4 wff ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
13 | 12, 2 | wex 1783 | . . 3 wff ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
14 | 13, 5 | cab 2715 | . 2 class {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
15 | 4, 14 | wceq 1539 | 1 wff {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
Colors of variables: wff setvar class |
This definition is referenced by: opabss 5134 opabbid 5135 opabbidv 5136 nfopabd 5138 nfopab1 5140 nfopab2 5141 cbvopab 5142 cbvopabv 5143 cbvopab1 5145 cbvopab1g 5146 cbvopab2 5147 cbvopab1s 5148 cbvopab1v 5149 cbvopab2v 5151 unopab 5152 opabidw 5431 opabid 5432 elopab 5433 ssopab2 5452 iunopab 5465 dfid2 5482 dfid3 5483 elxpi 5602 opabssxpd 5625 rabxp 5626 csbxp 5676 ssrel 5683 relopabi 5721 relopabiALT 5722 cnv0 6033 dfoprab2 7311 dmoprab 7354 dfopab2 7865 brdom7disj 10218 brdom6disj 10219 opabssi 30854 cnvoprabOLD 30957 bj-dfid2ALT 35163 rnxrn 36451 dropab1 41954 dropab2 41955 csbxpgVD 42403 relopabVD 42410 |
Copyright terms: Public domain | W3C validator |