Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-opab | Structured version Visualization version GIF version |
Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition does not require it (see dfid2 5492 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 7901. An example is given by ex-opab 28805. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
df-opab | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | 1, 2, 3 | copab 5137 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝜑} |
5 | vz | . . . . . . . 8 setvar 𝑧 | |
6 | 5 | cv 1538 | . . . . . . 7 class 𝑧 |
7 | 2 | cv 1538 | . . . . . . . 8 class 𝑥 |
8 | 3 | cv 1538 | . . . . . . . 8 class 𝑦 |
9 | 7, 8 | cop 4568 | . . . . . . 7 class 〈𝑥, 𝑦〉 |
10 | 6, 9 | wceq 1539 | . . . . . 6 wff 𝑧 = 〈𝑥, 𝑦〉 |
11 | 10, 1 | wa 396 | . . . . 5 wff (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
12 | 11, 3 | wex 1782 | . . . 4 wff ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
13 | 12, 2 | wex 1782 | . . 3 wff ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
14 | 13, 5 | cab 2716 | . 2 class {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
15 | 4, 14 | wceq 1539 | 1 wff {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
Colors of variables: wff setvar class |
This definition is referenced by: opabss 5139 opabbid 5140 opabbidv 5141 nfopabd 5143 nfopab1 5145 nfopab2 5146 cbvopab 5147 cbvopabv 5148 cbvopab1 5150 cbvopab1g 5151 cbvopab2 5152 cbvopab1s 5153 cbvopab1v 5154 cbvopab2v 5156 unopab 5157 opabidw 5438 opabid 5439 elopabw 5440 ssopab2 5460 iunopab 5473 iunopabOLD 5474 dfid2 5492 dfid3 5493 elxpi 5612 opabssxpd 5635 rabxp 5636 csbxp 5687 ssrelOLD 5695 relopabi 5734 relopabiALT 5735 cnv0 6049 dfoprab2 7342 dmoprab 7385 dfopab2 7901 brdom7disj 10296 brdom6disj 10297 opabssi 30962 cnvoprabOLD 31064 bj-dfid2ALT 35245 rnxrn 36531 dropab1 42072 dropab2 42073 csbxpgVD 42521 relopabVD 42528 |
Copyright terms: Public domain | W3C validator |