![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-opab | Structured version Visualization version GIF version |
Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition does not require it (see dfid2 5575 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 8040. An example is given by ex-opab 29952. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
df-opab | ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | 1, 2, 3 | copab 5209 | . 2 class {⟨𝑥, 𝑦⟩ ∣ 𝜑} |
5 | vz | . . . . . . . 8 setvar 𝑧 | |
6 | 5 | cv 1538 | . . . . . . 7 class 𝑧 |
7 | 2 | cv 1538 | . . . . . . . 8 class 𝑥 |
8 | 3 | cv 1538 | . . . . . . . 8 class 𝑦 |
9 | 7, 8 | cop 4633 | . . . . . . 7 class ⟨𝑥, 𝑦⟩ |
10 | 6, 9 | wceq 1539 | . . . . . 6 wff 𝑧 = ⟨𝑥, 𝑦⟩ |
11 | 10, 1 | wa 394 | . . . . 5 wff (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) |
12 | 11, 3 | wex 1779 | . . . 4 wff ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) |
13 | 12, 2 | wex 1779 | . . 3 wff ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) |
14 | 13, 5 | cab 2707 | . 2 class {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} |
15 | 4, 14 | wceq 1539 | 1 wff {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} |
Colors of variables: wff setvar class |
This definition is referenced by: opabss 5211 opabbid 5212 opabbidv 5213 nfopabd 5215 nfopab1 5217 nfopab2 5218 cbvopab 5219 cbvopabv 5220 cbvopab1 5222 cbvopab1g 5223 cbvopab2 5224 cbvopab1s 5225 cbvopab1v 5226 cbvopab2v 5228 unopab 5229 opabidw 5523 opabid 5524 elopabw 5525 ssopab2 5545 iunopab 5558 iunopabOLD 5559 dfid2 5575 dfid3 5576 elxpi 5697 opabssxpd 5722 rabxp 5723 csbxp 5774 ssrelOLD 5782 relopabi 5821 relopabiALT 5822 cnv0 6139 dfoprab2 7469 dmoprab 7512 dfopab2 8040 brdom7disj 10528 brdom6disj 10529 opabssi 32109 cnvoprabOLD 32212 bj-dfid2ALT 36249 rnxrn 37571 dropab1 43508 dropab2 43509 csbxpgVD 43957 relopabVD 43964 |
Copyright terms: Public domain | W3C validator |