| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-opab | Structured version Visualization version GIF version | ||
| Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition does not require it (see dfid2 5535 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 8031. An example is given by ex-opab 30361. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| df-opab | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | vy | . . 3 setvar 𝑦 | |
| 4 | 1, 2, 3 | copab 5169 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝜑} |
| 5 | vz | . . . . . . . 8 setvar 𝑧 | |
| 6 | 5 | cv 1539 | . . . . . . 7 class 𝑧 |
| 7 | 2 | cv 1539 | . . . . . . . 8 class 𝑥 |
| 8 | 3 | cv 1539 | . . . . . . . 8 class 𝑦 |
| 9 | 7, 8 | cop 4595 | . . . . . . 7 class 〈𝑥, 𝑦〉 |
| 10 | 6, 9 | wceq 1540 | . . . . . 6 wff 𝑧 = 〈𝑥, 𝑦〉 |
| 11 | 10, 1 | wa 395 | . . . . 5 wff (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 12 | 11, 3 | wex 1779 | . . . 4 wff ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 13 | 12, 2 | wex 1779 | . . 3 wff ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
| 14 | 13, 5 | cab 2707 | . 2 class {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| 15 | 4, 14 | wceq 1540 | 1 wff {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
| Colors of variables: wff setvar class |
| This definition is referenced by: opabss 5171 opabbid 5172 opabbidv 5173 nfopabd 5175 nfopab1 5177 nfopab2 5178 cbvopab 5179 cbvopabv 5180 cbvopab1 5181 cbvopab1g 5182 cbvopab2 5183 cbvopab1s 5184 cbvopab1v 5185 cbvopab2v 5186 unopab 5187 opabidw 5484 opabid 5485 elopabw 5486 ssopab2 5506 iunopab 5519 iunopabOLD 5520 dfid2 5535 dfid3 5536 elxpi 5660 opabssxpd 5685 rabxp 5686 csbxp 5738 ssrelOLD 5746 relopabi 5785 relopabiALT 5786 cnv0 6113 dfoprab2 7447 dmoprab 7492 dfopab2 8031 brdom7disj 10484 brdom6disj 10485 opabssi 32541 cbvopab1davw 36252 cbvopab2davw 36253 cbvopabdavw 36254 bj-dfid2ALT 37053 rnxrn 38384 dropab1 44436 dropab2 44437 csbxpgVD 44883 relopabVD 44890 |
| Copyright terms: Public domain | W3C validator |