Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-opab | Structured version Visualization version GIF version |
Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition does not require it (see dfid2 5524 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 7964. An example is given by ex-opab 29083. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
df-opab | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | 1, 2, 3 | copab 5158 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝜑} |
5 | vz | . . . . . . . 8 setvar 𝑧 | |
6 | 5 | cv 1540 | . . . . . . 7 class 𝑧 |
7 | 2 | cv 1540 | . . . . . . . 8 class 𝑥 |
8 | 3 | cv 1540 | . . . . . . . 8 class 𝑦 |
9 | 7, 8 | cop 4583 | . . . . . . 7 class 〈𝑥, 𝑦〉 |
10 | 6, 9 | wceq 1541 | . . . . . 6 wff 𝑧 = 〈𝑥, 𝑦〉 |
11 | 10, 1 | wa 397 | . . . . 5 wff (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
12 | 11, 3 | wex 1781 | . . . 4 wff ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
13 | 12, 2 | wex 1781 | . . 3 wff ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
14 | 13, 5 | cab 2714 | . 2 class {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
15 | 4, 14 | wceq 1541 | 1 wff {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
Colors of variables: wff setvar class |
This definition is referenced by: opabss 5160 opabbid 5161 opabbidv 5162 nfopabd 5164 nfopab1 5166 nfopab2 5167 cbvopab 5168 cbvopabv 5169 cbvopab1 5171 cbvopab1g 5172 cbvopab2 5173 cbvopab1s 5174 cbvopab1v 5175 cbvopab2v 5177 unopab 5178 opabidw 5472 opabid 5473 elopabw 5474 ssopab2 5494 iunopab 5507 iunopabOLD 5508 dfid2 5524 dfid3 5525 elxpi 5646 opabssxpd 5669 rabxp 5670 csbxp 5721 ssrelOLD 5729 relopabi 5768 relopabiALT 5769 cnv0 6083 dfoprab2 7399 dmoprab 7442 dfopab2 7964 brdom7disj 10392 brdom6disj 10393 opabssi 31238 cnvoprabOLD 31340 bj-dfid2ALT 35390 rnxrn 36716 dropab1 42438 dropab2 42439 csbxpgVD 42887 relopabVD 42894 |
Copyright terms: Public domain | W3C validator |