![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-opab | Structured version Visualization version GIF version |
Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition does not require it (see dfid2 5595 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 8093. An example is given by ex-opab 30464. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
df-opab | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | 1, 2, 3 | copab 5228 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝜑} |
5 | vz | . . . . . . . 8 setvar 𝑧 | |
6 | 5 | cv 1536 | . . . . . . 7 class 𝑧 |
7 | 2 | cv 1536 | . . . . . . . 8 class 𝑥 |
8 | 3 | cv 1536 | . . . . . . . 8 class 𝑦 |
9 | 7, 8 | cop 4654 | . . . . . . 7 class 〈𝑥, 𝑦〉 |
10 | 6, 9 | wceq 1537 | . . . . . 6 wff 𝑧 = 〈𝑥, 𝑦〉 |
11 | 10, 1 | wa 395 | . . . . 5 wff (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
12 | 11, 3 | wex 1777 | . . . 4 wff ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
13 | 12, 2 | wex 1777 | . . 3 wff ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
14 | 13, 5 | cab 2717 | . 2 class {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
15 | 4, 14 | wceq 1537 | 1 wff {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
Colors of variables: wff setvar class |
This definition is referenced by: opabss 5230 opabbid 5231 opabbidv 5232 nfopabd 5234 nfopab1 5236 nfopab2 5237 cbvopab 5238 cbvopabv 5239 cbvopab1 5241 cbvopab1g 5242 cbvopab2 5243 cbvopab1s 5244 cbvopab1v 5245 cbvopab2v 5247 unopab 5248 opabidw 5543 opabid 5544 elopabw 5545 ssopab2 5565 iunopab 5578 iunopabOLD 5579 dfid2 5595 dfid3 5596 elxpi 5722 opabssxpd 5747 rabxp 5748 csbxp 5799 ssrelOLD 5807 relopabi 5846 relopabiALT 5847 cnv0 6172 dfoprab2 7508 dmoprab 7552 dfopab2 8093 brdom7disj 10600 brdom6disj 10601 opabssi 32635 cnvoprabOLD 32734 cbvopab1davw 36230 cbvopab2davw 36231 cbvopabdavw 36232 bj-dfid2ALT 37031 rnxrn 38354 dropab1 44416 dropab2 44417 csbxpgVD 44865 relopabVD 44872 |
Copyright terms: Public domain | W3C validator |