![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-opab | Structured version Visualization version GIF version |
Description: Define the class abstraction of a collection of ordered pairs. Definition 3.3 of [Monk1] p. 34. Usually 𝑥 and 𝑦 are distinct, although the definition does not require it (see dfid2 5584 for a case where they are not distinct). The brace notation is called "class abstraction" by Quine; it is also called "class builder" in the literature. An alternate definition using no existential quantifiers is shown by dfopab2 8075. An example is given by ex-opab 30460. (Contributed by NM, 4-Jul-1994.) |
Ref | Expression |
---|---|
df-opab | ⊢ {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | vx | . . 3 setvar 𝑥 | |
3 | vy | . . 3 setvar 𝑦 | |
4 | 1, 2, 3 | copab 5209 | . 2 class {〈𝑥, 𝑦〉 ∣ 𝜑} |
5 | vz | . . . . . . . 8 setvar 𝑧 | |
6 | 5 | cv 1535 | . . . . . . 7 class 𝑧 |
7 | 2 | cv 1535 | . . . . . . . 8 class 𝑥 |
8 | 3 | cv 1535 | . . . . . . . 8 class 𝑦 |
9 | 7, 8 | cop 4636 | . . . . . . 7 class 〈𝑥, 𝑦〉 |
10 | 6, 9 | wceq 1536 | . . . . . 6 wff 𝑧 = 〈𝑥, 𝑦〉 |
11 | 10, 1 | wa 395 | . . . . 5 wff (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
12 | 11, 3 | wex 1775 | . . . 4 wff ∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
13 | 12, 2 | wex 1775 | . . 3 wff ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑) |
14 | 13, 5 | cab 2711 | . 2 class {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
15 | 4, 14 | wceq 1536 | 1 wff {〈𝑥, 𝑦〉 ∣ 𝜑} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧 = 〈𝑥, 𝑦〉 ∧ 𝜑)} |
Colors of variables: wff setvar class |
This definition is referenced by: opabss 5211 opabbid 5212 opabbidv 5213 nfopabd 5215 nfopab1 5217 nfopab2 5218 cbvopab 5219 cbvopabv 5220 cbvopab1 5222 cbvopab1g 5223 cbvopab2 5224 cbvopab1s 5225 cbvopab1v 5226 cbvopab2v 5228 unopab 5229 opabidw 5533 opabid 5534 elopabw 5535 ssopab2 5555 iunopab 5568 iunopabOLD 5569 dfid2 5584 dfid3 5585 elxpi 5710 opabssxpd 5735 rabxp 5736 csbxp 5787 ssrelOLD 5795 relopabi 5834 relopabiALT 5835 cnv0 6162 dfoprab2 7490 dmoprab 7534 dfopab2 8075 brdom7disj 10568 brdom6disj 10569 opabssi 32632 cnvoprabOLD 32737 cbvopab1davw 36246 cbvopab2davw 36247 cbvopabdavw 36248 bj-dfid2ALT 37047 rnxrn 38379 dropab1 44442 dropab2 44443 csbxpgVD 44891 relopabVD 44898 |
Copyright terms: Public domain | W3C validator |