![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpteq1 | Structured version Visualization version GIF version |
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) |
Ref | Expression |
---|---|
mpteq1 | ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2778 | . . 3 ⊢ (𝑥 ∈ 𝐴 → 𝐶 = 𝐶) | |
2 | 1 | rgen 3103 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐶 = 𝐶 |
3 | mpteq12 4971 | . 2 ⊢ ((𝐴 = 𝐵 ∧ ∀𝑥 ∈ 𝐴 𝐶 = 𝐶) → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
4 | 2, 3 | mpan2 681 | 1 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∈ wcel 2106 ∀wral 3089 ↦ cmpt 4965 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2054 ax-9 2115 ax-10 2134 ax-12 2162 ax-ext 2753 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2763 df-cleq 2769 df-clel 2773 df-ral 3094 df-opab 4949 df-mpt 4966 |
This theorem is referenced by: mpteq1d 4973 mpteq1i 4974 tposf12 7659 oarec 7926 wunex2 9895 wuncval2 9904 vrmdfval 17780 pmtrfval 18253 sylow1 18402 sylow2b 18422 sylow3lem5 18430 sylow3 18432 gsumconst 18720 gsum2dlem2 18756 gsumcom2 18760 srgbinomlem4 18930 mvrfval 19817 mplcoe1 19862 mplcoe5 19865 evlsval 19915 ply1coe 20062 coe1fzgsumd 20068 evls1fval 20080 evl1gsumd 20117 gsumfsum 20209 mavmul0 20763 m2detleiblem3 20840 m2detleiblem4 20841 madugsum 20854 cramer0 20903 pmatcollpw3fi1lem1 20998 restco 21376 cnmpt1t 21877 cnmpt2t 21885 fmval 22155 symgtgp 22313 prdstgpd 22336 dfarea 25139 istrkg2ld 25811 gsumvsca1 30344 gsumvsca2 30345 indv 30672 gsumesum 30719 esumlub 30720 esum2d 30753 sitg0 31006 matunitlindflem1 34015 matunitlindf 34017 sdclem2 34146 fsovcnvlem 39245 ntrneibex 39309 stoweidlem9 41135 sge0sn 41502 sge0iunmptlemfi 41536 sge0isum 41550 ovn02 41691 |
Copyright terms: Public domain | W3C validator |