| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq1 | Structured version Visualization version GIF version | ||
| Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| mpteq1 | ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | eqidd 2736 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
| 3 | 1, 2 | mpteq12dv 5207 | 1 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ↦ cmpt 5201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-opab 5182 df-mpt 5202 |
| This theorem is referenced by: mpteq1d 5210 mpteq1iOLD 5212 tposf12 8250 oarec 8574 wunex2 10752 wuncval2 10761 vrmdfval 18834 pmtrfval 19431 sylow1 19584 sylow2b 19604 sylow3lem5 19612 sylow3 19614 gsumconst 19915 gsum2dlem2 19952 gsumfsum 21402 mvrfval 21941 mplcoe1 21995 mplcoe5 21998 evlsval 22044 coe1fzgsumd 22242 evls1fval 22257 evl1gsumd 22295 mavmul0 22490 madugsum 22581 cramer0 22628 cnmpt1t 23603 cnmpt2t 23611 fmval 23881 symgtgp 24044 prdstgpd 24063 indv 32829 gsumvsca1 33223 gsumvsca2 33224 qusima 33423 qusrn 33424 nsgmgc 33427 nsgqusf1olem2 33429 gsumesum 34090 esumlub 34091 esum2d 34124 sitg0 34378 matunitlindflem1 37640 matunitlindf 37642 sdclem2 37766 evl1gprodd 42130 idomnnzgmulnz 42146 deg1gprod 42153 fsovcnvlem 44037 ntrneibex 44097 stoweidlem9 46038 sge0sn 46408 sge0iunmptlemfi 46442 sge0isum 46456 ovn02 46597 |
| Copyright terms: Public domain | W3C validator |