![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpteq1 | Structured version Visualization version GIF version |
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.) |
Ref | Expression |
---|---|
mpteq1 | ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | eqidd 2741 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
3 | 1, 2 | mpteq12dv 5257 | 1 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ↦ cmpt 5249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-opab 5229 df-mpt 5250 |
This theorem is referenced by: mpteq1d 5261 mpteq1iOLD 5263 tposf12 8292 oarec 8618 wunex2 10807 wuncval2 10816 vrmdfval 18891 pmtrfval 19492 sylow1 19645 sylow2b 19665 sylow3lem5 19673 sylow3 19675 gsumconst 19976 gsum2dlem2 20013 gsumfsum 21475 mvrfval 22024 mplcoe1 22078 mplcoe5 22081 evlsval 22133 coe1fzgsumd 22329 evls1fval 22344 evl1gsumd 22382 mavmul0 22579 madugsum 22670 cramer0 22717 cnmpt1t 23694 cnmpt2t 23702 fmval 23972 symgtgp 24135 prdstgpd 24154 gsumvsca1 33205 gsumvsca2 33206 qusima 33401 qusrn 33402 nsgmgc 33405 nsgqusf1olem2 33407 indv 33976 gsumesum 34023 esumlub 34024 esum2d 34057 sitg0 34311 matunitlindflem1 37576 matunitlindf 37578 sdclem2 37702 evl1gprodd 42074 idomnnzgmulnz 42090 deg1gprod 42097 fsovcnvlem 43975 ntrneibex 44035 stoweidlem9 45930 sge0sn 46300 sge0iunmptlemfi 46334 sge0isum 46348 ovn02 46489 |
Copyright terms: Public domain | W3C validator |