| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq1 | Structured version Visualization version GIF version | ||
| Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| mpteq1 | ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | eqidd 2731 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
| 3 | 1, 2 | mpteq12dv 5197 | 1 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ↦ cmpt 5191 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-opab 5173 df-mpt 5192 |
| This theorem is referenced by: mpteq1d 5200 tposf12 8233 oarec 8529 wunex2 10698 wuncval2 10707 vrmdfval 18790 pmtrfval 19387 sylow1 19540 sylow2b 19560 sylow3lem5 19568 sylow3 19570 gsumconst 19871 gsum2dlem2 19908 gsumfsum 21358 mvrfval 21897 mplcoe1 21951 mplcoe5 21954 evlsval 22000 coe1fzgsumd 22198 evls1fval 22213 evl1gsumd 22251 mavmul0 22446 madugsum 22537 cramer0 22584 cnmpt1t 23559 cnmpt2t 23567 fmval 23837 symgtgp 24000 prdstgpd 24019 indv 32782 gsumvsca1 33186 gsumvsca2 33187 qusima 33386 qusrn 33387 nsgmgc 33390 nsgqusf1olem2 33392 gsumesum 34056 esumlub 34057 esum2d 34090 sitg0 34344 matunitlindflem1 37617 matunitlindf 37619 sdclem2 37743 evl1gprodd 42112 idomnnzgmulnz 42128 deg1gprod 42135 fsovcnvlem 44009 ntrneibex 44069 stoweidlem9 46014 sge0sn 46384 sge0iunmptlemfi 46418 sge0isum 46432 ovn02 46573 |
| Copyright terms: Public domain | W3C validator |