| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq1 | Structured version Visualization version GIF version | ||
| Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| mpteq1 | ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | eqidd 2730 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
| 3 | 1, 2 | mpteq12dv 5182 | 1 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ↦ cmpt 5176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5158 df-mpt 5177 |
| This theorem is referenced by: mpteq1d 5185 tposf12 8191 oarec 8487 wunex2 10651 wuncval2 10660 vrmdfval 18748 pmtrfval 19347 sylow1 19500 sylow2b 19520 sylow3lem5 19528 sylow3 19530 gsumconst 19831 gsum2dlem2 19868 gsumfsum 21359 mvrfval 21906 mplcoe1 21960 mplcoe5 21963 evlsval 22009 coe1fzgsumd 22207 evls1fval 22222 evl1gsumd 22260 mavmul0 22455 madugsum 22546 cramer0 22593 cnmpt1t 23568 cnmpt2t 23576 fmval 23846 symgtgp 24009 prdstgpd 24028 indv 32808 gsumvsca1 33181 gsumvsca2 33182 qusima 33358 qusrn 33359 nsgmgc 33362 nsgqusf1olem2 33364 gsumesum 34028 esumlub 34029 esum2d 34062 sitg0 34316 matunitlindflem1 37598 matunitlindf 37600 sdclem2 37724 evl1gprodd 42093 idomnnzgmulnz 42109 deg1gprod 42116 fsovcnvlem 43989 ntrneibex 44049 stoweidlem9 45994 sge0sn 46364 sge0iunmptlemfi 46398 sge0isum 46412 ovn02 46553 |
| Copyright terms: Public domain | W3C validator |