| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq1 | Structured version Visualization version GIF version | ||
| Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| mpteq1 | ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | eqidd 2734 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
| 3 | 1, 2 | mpteq12dv 5182 | 1 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ↦ cmpt 5176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-opab 5158 df-mpt 5177 |
| This theorem is referenced by: mpteq1d 5185 tposf12 8190 oarec 8486 wunex2 10640 wuncval2 10649 vrmdfval 18772 pmtrfval 19370 sylow1 19523 sylow2b 19543 sylow3lem5 19551 sylow3 19553 gsumconst 19854 gsum2dlem2 19891 gsumfsum 21380 mvrfval 21927 mplcoe1 21983 mplcoe5 21986 evlsval 22032 coe1fzgsumd 22239 evls1fval 22254 evl1gsumd 22292 mavmul0 22487 madugsum 22578 cramer0 22625 cnmpt1t 23600 cnmpt2t 23608 fmval 23878 symgtgp 24041 prdstgpd 24060 indv 32859 gsumvsca1 33236 gsumvsca2 33237 domnprodeq0 33286 qusima 33417 qusrn 33418 nsgmgc 33421 nsgqusf1olem2 33423 deg1prod 33592 vieta 33664 gsumesum 34144 esumlub 34145 esum2d 34178 sitg0 34431 matunitlindflem1 37729 matunitlindf 37731 sdclem2 37855 evl1gprodd 42283 idomnnzgmulnz 42299 deg1gprod 42306 fsovcnvlem 44170 ntrneibex 44230 stoweidlem9 46169 sge0sn 46539 sge0iunmptlemfi 46573 sge0isum 46587 ovn02 46728 |
| Copyright terms: Public domain | W3C validator |