![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpteq1 | Structured version Visualization version GIF version |
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.) |
Ref | Expression |
---|---|
mpteq1 | ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | eqidd 2735 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
3 | 1, 2 | mpteq12dv 5238 | 1 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ↦ cmpt 5230 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-opab 5210 df-mpt 5231 |
This theorem is referenced by: mpteq1d 5242 mpteq1iOLD 5244 tposf12 8274 oarec 8598 wunex2 10775 wuncval2 10784 vrmdfval 18881 pmtrfval 19482 sylow1 19635 sylow2b 19655 sylow3lem5 19663 sylow3 19665 gsumconst 19966 gsum2dlem2 20003 gsumfsum 21469 mvrfval 22018 mplcoe1 22072 mplcoe5 22075 evlsval 22127 coe1fzgsumd 22323 evls1fval 22338 evl1gsumd 22376 mavmul0 22573 madugsum 22664 cramer0 22711 cnmpt1t 23688 cnmpt2t 23696 fmval 23966 symgtgp 24129 prdstgpd 24148 gsumvsca1 33214 gsumvsca2 33215 qusima 33415 qusrn 33416 nsgmgc 33419 nsgqusf1olem2 33421 indv 33992 gsumesum 34039 esumlub 34040 esum2d 34073 sitg0 34327 matunitlindflem1 37602 matunitlindf 37604 sdclem2 37728 evl1gprodd 42098 idomnnzgmulnz 42114 deg1gprod 42121 fsovcnvlem 44002 ntrneibex 44062 stoweidlem9 45964 sge0sn 46334 sge0iunmptlemfi 46368 sge0isum 46382 ovn02 46523 |
Copyright terms: Public domain | W3C validator |