Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpteq1 | Structured version Visualization version GIF version |
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.) |
Ref | Expression |
---|---|
mpteq1 | ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | eqidd 2739 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
3 | 1, 2 | mpteq12dv 5161 | 1 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ↦ cmpt 5153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-opab 5133 df-mpt 5154 |
This theorem is referenced by: mpteq1d 5165 mpteq1iOLD 5167 tposf12 8038 oarec 8355 wunex2 10425 wuncval2 10434 vrmdfval 18410 pmtrfval 18973 sylow1 19123 sylow2b 19143 sylow3lem5 19151 sylow3 19153 gsumconst 19450 gsum2dlem2 19487 gsumfsum 20577 mvrfval 21099 mplcoe1 21148 mplcoe5 21151 evlsval 21206 coe1fzgsumd 21383 evls1fval 21395 evl1gsumd 21433 mavmul0 21609 madugsum 21700 cramer0 21747 cnmpt1t 22724 cnmpt2t 22732 fmval 23002 symgtgp 23165 prdstgpd 23184 gsumvsca1 31381 gsumvsca2 31382 qusima 31496 nsgmgc 31499 nsgqusf1olem2 31501 indv 31880 gsumesum 31927 esumlub 31928 esum2d 31961 sitg0 32213 matunitlindflem1 35700 matunitlindf 35702 sdclem2 35827 fsovcnvlem 41510 ntrneibex 41572 stoweidlem9 43440 sge0sn 43807 sge0iunmptlemfi 43841 sge0isum 43855 ovn02 43996 |
Copyright terms: Public domain | W3C validator |