| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq1 | Structured version Visualization version GIF version | ||
| Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| mpteq1 | ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | eqidd 2730 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
| 3 | 1, 2 | mpteq12dv 5189 | 1 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ↦ cmpt 5183 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5165 df-mpt 5184 |
| This theorem is referenced by: mpteq1d 5192 tposf12 8207 oarec 8503 wunex2 10667 wuncval2 10676 vrmdfval 18759 pmtrfval 19356 sylow1 19509 sylow2b 19529 sylow3lem5 19537 sylow3 19539 gsumconst 19840 gsum2dlem2 19877 gsumfsum 21327 mvrfval 21866 mplcoe1 21920 mplcoe5 21923 evlsval 21969 coe1fzgsumd 22167 evls1fval 22182 evl1gsumd 22220 mavmul0 22415 madugsum 22506 cramer0 22553 cnmpt1t 23528 cnmpt2t 23536 fmval 23806 symgtgp 23969 prdstgpd 23988 indv 32748 gsumvsca1 33152 gsumvsca2 33153 qusima 33352 qusrn 33353 nsgmgc 33356 nsgqusf1olem2 33358 gsumesum 34022 esumlub 34023 esum2d 34056 sitg0 34310 matunitlindflem1 37583 matunitlindf 37585 sdclem2 37709 evl1gprodd 42078 idomnnzgmulnz 42094 deg1gprod 42101 fsovcnvlem 43975 ntrneibex 44035 stoweidlem9 45980 sge0sn 46350 sge0iunmptlemfi 46384 sge0isum 46398 ovn02 46539 |
| Copyright terms: Public domain | W3C validator |