MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mpteq1 Structured version   Visualization version   GIF version

Theorem mpteq1 5242
Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.)
Assertion
Ref Expression
mpteq1 (𝐴 = 𝐵 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem mpteq1
StepHypRef Expression
1 id 22 . 2 (𝐴 = 𝐵𝐴 = 𝐵)
2 eqidd 2734 . 2 (𝐴 = 𝐵𝐶 = 𝐶)
31, 2mpteq12dv 5240 1 (𝐴 = 𝐵 → (𝑥𝐴𝐶) = (𝑥𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  cmpt 5232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-opab 5212  df-mpt 5233
This theorem is referenced by:  mpteq1d  5244  mpteq1iOLD  5246  tposf12  8236  oarec  8562  wunex2  10733  wuncval2  10742  vrmdfval  18737  pmtrfval  19318  sylow1  19471  sylow2b  19491  sylow3lem5  19499  sylow3  19501  gsumconst  19802  gsum2dlem2  19839  gsumfsum  21012  mvrfval  21540  mplcoe1  21592  mplcoe5  21595  evlsval  21649  coe1fzgsumd  21826  evls1fval  21838  evl1gsumd  21876  mavmul0  22054  madugsum  22145  cramer0  22192  cnmpt1t  23169  cnmpt2t  23177  fmval  23447  symgtgp  23610  prdstgpd  23629  gsumvsca1  32371  gsumvsca2  32372  qusima  32519  qusrn  32520  nsgmgc  32523  nsgqusf1olem2  32525  indv  33010  gsumesum  33057  esumlub  33058  esum2d  33091  sitg0  33345  matunitlindflem1  36484  matunitlindf  36486  sdclem2  36610  fsovcnvlem  42764  ntrneibex  42824  stoweidlem9  44725  sge0sn  45095  sge0iunmptlemfi  45129  sge0isum  45143  ovn02  45284
  Copyright terms: Public domain W3C validator