| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq1 | Structured version Visualization version GIF version | ||
| Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| mpteq1 | ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | eqidd 2730 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
| 3 | 1, 2 | mpteq12dv 5194 | 1 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ↦ cmpt 5188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5170 df-mpt 5189 |
| This theorem is referenced by: mpteq1d 5197 tposf12 8230 oarec 8526 wunex2 10691 wuncval2 10700 vrmdfval 18783 pmtrfval 19380 sylow1 19533 sylow2b 19553 sylow3lem5 19561 sylow3 19563 gsumconst 19864 gsum2dlem2 19901 gsumfsum 21351 mvrfval 21890 mplcoe1 21944 mplcoe5 21947 evlsval 21993 coe1fzgsumd 22191 evls1fval 22206 evl1gsumd 22244 mavmul0 22439 madugsum 22530 cramer0 22577 cnmpt1t 23552 cnmpt2t 23560 fmval 23830 symgtgp 23993 prdstgpd 24012 indv 32775 gsumvsca1 33179 gsumvsca2 33180 qusima 33379 qusrn 33380 nsgmgc 33383 nsgqusf1olem2 33385 gsumesum 34049 esumlub 34050 esum2d 34083 sitg0 34337 matunitlindflem1 37610 matunitlindf 37612 sdclem2 37736 evl1gprodd 42105 idomnnzgmulnz 42121 deg1gprod 42128 fsovcnvlem 44002 ntrneibex 44062 stoweidlem9 46007 sge0sn 46377 sge0iunmptlemfi 46411 sge0isum 46425 ovn02 46566 |
| Copyright terms: Public domain | W3C validator |