| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq1 | Structured version Visualization version GIF version | ||
| Description: An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Proof shortened by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| mpteq1 | ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | eqidd 2732 | . 2 ⊢ (𝐴 = 𝐵 → 𝐶 = 𝐶) | |
| 3 | 1, 2 | mpteq12dv 5173 | 1 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ↦ cmpt 5167 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-opab 5149 df-mpt 5168 |
| This theorem is referenced by: mpteq1d 5176 tposf12 8176 oarec 8472 wunex2 10624 wuncval2 10633 vrmdfval 18759 pmtrfval 19357 sylow1 19510 sylow2b 19530 sylow3lem5 19538 sylow3 19540 gsumconst 19841 gsum2dlem2 19878 gsumfsum 21366 mvrfval 21913 mplcoe1 21967 mplcoe5 21970 evlsval 22016 coe1fzgsumd 22214 evls1fval 22229 evl1gsumd 22267 mavmul0 22462 madugsum 22553 cramer0 22600 cnmpt1t 23575 cnmpt2t 23583 fmval 23853 symgtgp 24016 prdstgpd 24035 indv 32825 gsumvsca1 33187 gsumvsca2 33188 qusima 33365 qusrn 33366 nsgmgc 33369 nsgqusf1olem2 33371 gsumesum 34064 esumlub 34065 esum2d 34098 sitg0 34351 matunitlindflem1 37656 matunitlindf 37658 sdclem2 37782 evl1gprodd 42150 idomnnzgmulnz 42166 deg1gprod 42173 fsovcnvlem 44046 ntrneibex 44106 stoweidlem9 46047 sge0sn 46417 sge0iunmptlemfi 46451 sge0isum 46465 ovn02 46606 |
| Copyright terms: Public domain | W3C validator |