| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq1i | Structured version Visualization version GIF version | ||
| Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) Remove all disjoint variable conditions. (Revised by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| mpteq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| mpteq1i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq1i.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = 𝐵) |
| 3 | eqidd 2734 | . . 3 ⊢ (⊤ → 𝐶 = 𝐶) | |
| 4 | 2, 3 | mpteq12dv 5182 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| 5 | 4 | mptru 1548 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊤wtru 1542 ↦ cmpt 5176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-opab 5158 df-mpt 5177 |
| This theorem is referenced by: fmptap 7112 mpompt 7468 offres 7923 mpomptsx 8004 mpompts 8005 pwfseq 10564 wrd2f1tovbij 14871 pmtrprfval 19403 gsum2dlem2 19887 gsumcom2 19891 srgbinomlem4 20151 ply1coe 22216 m2detleiblem3 22547 m2detleiblem4 22548 pmatcollpw3fi1lem1 22704 restco 23082 limcdif 25807 dfarea 26900 nosupcbv 27644 noinfcbv 27659 istrkg2ld 28441 wlknwwlksnbij 29870 wwlksnextbij 29884 clwlknf1oclwwlkn 30068 dfhnorm2 31106 partfun2 32663 ccatws1f1o 32941 gsumwrd2dccat 33056 algextdeglem4 33756 algextdeglem5 33757 dfadjliftmap2 38494 dfblockliftmap2 38497 trlset 40283 limsupequzmptlem 45853 sge0iunmptlemfi 46538 sge0iunmpt 46543 hoidmvlelem3 46722 smfmulc1 46921 smflimsuplem2 46946 tposrescnv 49006 swapf1f1o 49403 precofval3 49499 |
| Copyright terms: Public domain | W3C validator |