| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq1i | Structured version Visualization version GIF version | ||
| Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) Remove all disjoint variable conditions. (Revised by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| mpteq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| mpteq1i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq1i.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = 𝐵) |
| 3 | eqidd 2736 | . . 3 ⊢ (⊤ → 𝐶 = 𝐶) | |
| 4 | 2, 3 | mpteq12dv 5207 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| 5 | 4 | mptru 1547 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ↦ cmpt 5201 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-opab 5182 df-mpt 5202 |
| This theorem is referenced by: fmptap 7161 mpompt 7519 offres 7980 mpomptsx 8061 mpompts 8062 pwfseq 10676 wrd2f1tovbij 14977 pmtrprfval 19466 gsum2dlem2 19950 gsumcom2 19954 srgbinomlem4 20187 ply1coe 22234 m2detleiblem3 22565 m2detleiblem4 22566 pmatcollpw3fi1lem1 22722 restco 23100 limcdif 25827 dfarea 26920 nosupcbv 27664 noinfcbv 27679 istrkg2ld 28385 wlknwwlksnbij 29816 wwlksnextbij 29830 clwlknf1oclwwlkn 30011 dfhnorm2 31049 ccatws1f1o 32873 gsumwrd2dccat 33007 algextdeglem4 33700 algextdeglem5 33701 trlset 40126 limsupequzmptlem 45705 sge0iunmptlemfi 46390 sge0iunmpt 46395 hoidmvlelem3 46574 smfmulc1 46773 smflimsuplem2 46798 tposrescnv 48802 swapf1f1o 49140 precofval3 49230 |
| Copyright terms: Public domain | W3C validator |