| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq1i | Structured version Visualization version GIF version | ||
| Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) Remove all disjoint variable conditions. (Revised by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| mpteq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| mpteq1i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq1i.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = 𝐵) |
| 3 | eqidd 2731 | . . 3 ⊢ (⊤ → 𝐶 = 𝐶) | |
| 4 | 2, 3 | mpteq12dv 5197 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| 5 | 4 | mptru 1547 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ↦ cmpt 5191 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-opab 5173 df-mpt 5192 |
| This theorem is referenced by: fmptap 7147 mpompt 7506 offres 7965 mpomptsx 8046 mpompts 8047 pwfseq 10624 wrd2f1tovbij 14933 pmtrprfval 19424 gsum2dlem2 19908 gsumcom2 19912 srgbinomlem4 20145 ply1coe 22192 m2detleiblem3 22523 m2detleiblem4 22524 pmatcollpw3fi1lem1 22680 restco 23058 limcdif 25784 dfarea 26877 nosupcbv 27621 noinfcbv 27636 istrkg2ld 28394 wlknwwlksnbij 29825 wwlksnextbij 29839 clwlknf1oclwwlkn 30020 dfhnorm2 31058 ccatws1f1o 32880 gsumwrd2dccat 33014 algextdeglem4 33717 algextdeglem5 33718 trlset 40162 limsupequzmptlem 45733 sge0iunmptlemfi 46418 sge0iunmpt 46423 hoidmvlelem3 46602 smfmulc1 46801 smflimsuplem2 46826 tposrescnv 48871 swapf1f1o 49268 precofval3 49364 |
| Copyright terms: Public domain | W3C validator |