![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpteq1i | Structured version Visualization version GIF version |
Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) Remove all disjoint variable conditions. (Revised by SN, 11-Nov-2024.) |
Ref | Expression |
---|---|
mpteq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
mpteq1i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq1i.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = 𝐵) |
3 | eqidd 2741 | . . 3 ⊢ (⊤ → 𝐶 = 𝐶) | |
4 | 2, 3 | mpteq12dv 5257 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
5 | 4 | mptru 1544 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ⊤wtru 1538 ↦ cmpt 5249 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-opab 5229 df-mpt 5250 |
This theorem is referenced by: fmptap 7204 mpompt 7564 offres 8024 mpomptsx 8105 mpompts 8106 pwfseq 10733 wrd2f1tovbij 15009 pmtrprfval 19529 gsum2dlem2 20013 gsumcom2 20017 srgbinomlem4 20256 ply1coe 22323 m2detleiblem3 22656 m2detleiblem4 22657 pmatcollpw3fi1lem1 22813 restco 23193 limcdif 25931 dfarea 27021 nosupcbv 27765 noinfcbv 27780 istrkg2ld 28486 wlknwwlksnbij 29921 wwlksnextbij 29935 clwlknf1oclwwlkn 30116 dfhnorm2 31154 ccatws1f1o 32918 algextdeglem4 33711 algextdeglem5 33712 trlset 40118 limsupequzmptlem 45649 sge0iunmptlemfi 46334 sge0iunmpt 46339 hoidmvlelem3 46518 smfmulc1 46717 smflimsuplem2 46742 |
Copyright terms: Public domain | W3C validator |