Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpteq1i | Structured version Visualization version GIF version |
Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) Remove all disjoint variable conditions. (Revised by SN, 11-Nov-2024.) |
Ref | Expression |
---|---|
mpteq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
mpteq1i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq1i.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = 𝐵) |
3 | eqidd 2739 | . . 3 ⊢ (⊤ → 𝐶 = 𝐶) | |
4 | 2, 3 | mpteq12dv 5161 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
5 | 4 | mptru 1546 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ↦ cmpt 5153 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-opab 5133 df-mpt 5154 |
This theorem is referenced by: fmptap 7024 mpompt 7366 offres 7799 mpomptsx 7877 mpompts 7878 pwfseq 10351 wrd2f1tovbij 14603 pmtrprfval 19010 gsum2dlem2 19487 gsumcom2 19491 srgbinomlem4 19694 ply1coe 21377 m2detleiblem3 21686 m2detleiblem4 21687 pmatcollpw3fi1lem1 21843 restco 22223 limcdif 24945 dfarea 26015 istrkg2ld 26725 wlknwwlksnbij 28154 wwlksnextbij 28168 clwlknf1oclwwlkn 28349 dfhnorm2 29385 nosupcbv 33832 noinfcbv 33847 trlset 38102 limsupequzmptlem 43159 sge0iunmptlemfi 43841 sge0iunmpt 43846 hoidmvlelem3 44025 smfmulc1 44217 smflimsuplem2 44241 |
Copyright terms: Public domain | W3C validator |