![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mpteq1i | Structured version Visualization version GIF version |
Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
mpteq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
mpteq1i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq1i.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | mpteq1 5012 | . 2 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1508 ↦ cmpt 5005 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-12 2107 ax-ext 2745 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-clab 2754 df-cleq 2766 df-clel 2841 df-ral 3088 df-opab 4989 df-mpt 5006 |
This theorem is referenced by: fmptap 6754 mpompt 7081 offres 7495 mpomptsx 7569 mpompts 7570 pwfseq 9883 wrd2f1tovbij 14184 pmtrprfval 18389 gsum2dlem2 18857 gsumcom2 18861 srgbinomlem4 19029 ply1coe 20183 m2detleiblem3 20958 m2detleiblem4 20959 pmatcollpw3fi1lem1 21114 restco 21492 limcdif 24193 dfarea 25256 istrkg2ld 25964 wlknwwlksnbij 27391 wwlksnextbij 27414 wwlksnextbijOLD 27415 clwlknf1oclwwlkn 27625 clwlknf1oclwwlknOLD 27627 dfhnorm2 28694 trlset 36775 limsupequzmptlem 41470 sge0iunmptlemfi 42156 sge0iunmpt 42161 hoidmvlelem3 42340 smfmulc1 42532 smflimsuplem2 42556 |
Copyright terms: Public domain | W3C validator |