| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq1i | Structured version Visualization version GIF version | ||
| Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) Remove all disjoint variable conditions. (Revised by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| mpteq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| mpteq1i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq1i.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = 𝐵) |
| 3 | eqidd 2730 | . . 3 ⊢ (⊤ → 𝐶 = 𝐶) | |
| 4 | 2, 3 | mpteq12dv 5182 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| 5 | 4 | mptru 1547 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ↦ cmpt 5176 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5158 df-mpt 5177 |
| This theorem is referenced by: fmptap 7110 mpompt 7467 offres 7925 mpomptsx 8006 mpompts 8007 pwfseq 10577 wrd2f1tovbij 14885 pmtrprfval 19384 gsum2dlem2 19868 gsumcom2 19872 srgbinomlem4 20132 ply1coe 22201 m2detleiblem3 22532 m2detleiblem4 22533 pmatcollpw3fi1lem1 22689 restco 23067 limcdif 25793 dfarea 26886 nosupcbv 27630 noinfcbv 27645 istrkg2ld 28423 wlknwwlksnbij 29851 wwlksnextbij 29865 clwlknf1oclwwlkn 30046 dfhnorm2 31084 ccatws1f1o 32906 gsumwrd2dccat 33033 algextdeglem4 33689 algextdeglem5 33690 trlset 40143 limsupequzmptlem 45713 sge0iunmptlemfi 46398 sge0iunmpt 46403 hoidmvlelem3 46582 smfmulc1 46781 smflimsuplem2 46806 tposrescnv 48867 swapf1f1o 49264 precofval3 49360 |
| Copyright terms: Public domain | W3C validator |