Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpteq1i | Structured version Visualization version GIF version |
Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) Remove all disjoint variable conditions. (Revised by SN, 11-Nov-2024.) |
Ref | Expression |
---|---|
mpteq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
mpteq1i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq1i.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = 𝐵) |
3 | eqidd 2739 | . . 3 ⊢ (⊤ → 𝐶 = 𝐶) | |
4 | 2, 3 | mpteq12dv 5165 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
5 | 4 | mptru 1546 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ⊤wtru 1540 ↦ cmpt 5157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-opab 5137 df-mpt 5158 |
This theorem is referenced by: fmptap 7042 mpompt 7388 offres 7826 mpomptsx 7904 mpompts 7905 pwfseq 10420 wrd2f1tovbij 14675 pmtrprfval 19095 gsum2dlem2 19572 gsumcom2 19576 srgbinomlem4 19779 ply1coe 21467 m2detleiblem3 21778 m2detleiblem4 21779 pmatcollpw3fi1lem1 21935 restco 22315 limcdif 25040 dfarea 26110 istrkg2ld 26821 wlknwwlksnbij 28253 wwlksnextbij 28267 clwlknf1oclwwlkn 28448 dfhnorm2 29484 nosupcbv 33905 noinfcbv 33920 trlset 38175 limsupequzmptlem 43269 sge0iunmptlemfi 43951 sge0iunmpt 43956 hoidmvlelem3 44135 smfmulc1 44330 smflimsuplem2 44354 |
Copyright terms: Public domain | W3C validator |