| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq1i | Structured version Visualization version GIF version | ||
| Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) Remove all disjoint variable conditions. (Revised by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| mpteq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| mpteq1i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq1i.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = 𝐵) |
| 3 | eqidd 2732 | . . 3 ⊢ (⊤ → 𝐶 = 𝐶) | |
| 4 | 2, 3 | mpteq12dv 5178 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| 5 | 4 | mptru 1548 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ⊤wtru 1542 ↦ cmpt 5172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-opab 5154 df-mpt 5173 |
| This theorem is referenced by: fmptap 7104 mpompt 7460 offres 7915 mpomptsx 7996 mpompts 7997 pwfseq 10555 wrd2f1tovbij 14867 pmtrprfval 19400 gsum2dlem2 19884 gsumcom2 19888 srgbinomlem4 20148 ply1coe 22214 m2detleiblem3 22545 m2detleiblem4 22546 pmatcollpw3fi1lem1 22702 restco 23080 limcdif 25805 dfarea 26898 nosupcbv 27642 noinfcbv 27657 istrkg2ld 28439 wlknwwlksnbij 29867 wwlksnextbij 29881 clwlknf1oclwwlkn 30062 dfhnorm2 31100 ccatws1f1o 32930 gsumwrd2dccat 33045 algextdeglem4 33731 algextdeglem5 33732 trlset 40206 limsupequzmptlem 45772 sge0iunmptlemfi 46457 sge0iunmpt 46462 hoidmvlelem3 46641 smfmulc1 46840 smflimsuplem2 46865 tposrescnv 48916 swapf1f1o 49313 precofval3 49409 |
| Copyright terms: Public domain | W3C validator |