Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mpteq1i | Structured version Visualization version GIF version |
Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) Remove all disjoint variable conditions. (Revised by SN, 11-Nov-2024.) |
Ref | Expression |
---|---|
mpteq1i.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
mpteq1i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpteq1i.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = 𝐵) |
3 | eqidd 2737 | . . 3 ⊢ (⊤ → 𝐶 = 𝐶) | |
4 | 2, 3 | mpteq12dv 5183 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
5 | 4 | mptru 1547 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ⊤wtru 1541 ↦ cmpt 5175 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-opab 5155 df-mpt 5176 |
This theorem is referenced by: fmptap 7098 mpompt 7450 offres 7894 mpomptsx 7972 mpompts 7973 pwfseq 10521 wrd2f1tovbij 14774 pmtrprfval 19191 gsum2dlem2 19667 gsumcom2 19671 srgbinomlem4 19874 ply1coe 21573 m2detleiblem3 21884 m2detleiblem4 21885 pmatcollpw3fi1lem1 22041 restco 22421 limcdif 25146 dfarea 26216 nosupcbv 26956 noinfcbv 26971 istrkg2ld 27110 wlknwwlksnbij 28541 wwlksnextbij 28555 clwlknf1oclwwlkn 28736 dfhnorm2 29772 trlset 38437 limsupequzmptlem 43614 sge0iunmptlemfi 44297 sge0iunmpt 44302 hoidmvlelem3 44481 smfmulc1 44680 smflimsuplem2 44705 |
Copyright terms: Public domain | W3C validator |