| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mpteq1i | Structured version Visualization version GIF version | ||
| Description: An equality theorem for the maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) Remove all disjoint variable conditions. (Revised by SN, 11-Nov-2024.) |
| Ref | Expression |
|---|---|
| mpteq1i.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| mpteq1i | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpteq1i.1 | . . . 4 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = 𝐵) |
| 3 | eqidd 2730 | . . 3 ⊢ (⊤ → 𝐶 = 𝐶) | |
| 4 | 2, 3 | mpteq12dv 5194 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶)) |
| 5 | 4 | mptru 1547 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐶) = (𝑥 ∈ 𝐵 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ⊤wtru 1541 ↦ cmpt 5188 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-opab 5170 df-mpt 5189 |
| This theorem is referenced by: fmptap 7144 mpompt 7503 offres 7962 mpomptsx 8043 mpompts 8044 pwfseq 10617 wrd2f1tovbij 14926 pmtrprfval 19417 gsum2dlem2 19901 gsumcom2 19905 srgbinomlem4 20138 ply1coe 22185 m2detleiblem3 22516 m2detleiblem4 22517 pmatcollpw3fi1lem1 22673 restco 23051 limcdif 25777 dfarea 26870 nosupcbv 27614 noinfcbv 27629 istrkg2ld 28387 wlknwwlksnbij 29818 wwlksnextbij 29832 clwlknf1oclwwlkn 30013 dfhnorm2 31051 ccatws1f1o 32873 gsumwrd2dccat 33007 algextdeglem4 33710 algextdeglem5 33711 trlset 40155 limsupequzmptlem 45726 sge0iunmptlemfi 46411 sge0iunmpt 46416 hoidmvlelem3 46595 smfmulc1 46794 smflimsuplem2 46819 tposrescnv 48867 swapf1f1o 49264 precofval3 49360 |
| Copyright terms: Public domain | W3C validator |