| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm3.14 | Structured version Visualization version GIF version | ||
| Description: Theorem *3.14 of [WhiteheadRussell] p. 111. (Contributed by NM, 3-Jan-2005.) |
| Ref | Expression |
|---|---|
| pm3.14 | ⊢ ((¬ 𝜑 ∨ ¬ 𝜓) → ¬ (𝜑 ∧ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.1 993 | . 2 ⊢ ((𝜑 ∧ 𝜓) → ¬ (¬ 𝜑 ∨ ¬ 𝜓)) | |
| 2 | 1 | con2i 139 | 1 ⊢ ((¬ 𝜑 ∨ ¬ 𝜓) → ¬ (𝜑 ∧ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 |
| This theorem is referenced by: naim1 36412 naim2 36413 finxpreclem2 37413 tsan2 38171 tsan3 38172 ntrneiel2 44077 onenotinotbothi 46929 twonotinotbothi 46930 |
| Copyright terms: Public domain | W3C validator |