MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neorian Structured version   Visualization version   GIF version

Theorem neorian 3021
Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.)
Assertion
Ref Expression
neorian ((𝐴𝐵𝐶𝐷) ↔ ¬ (𝐴 = 𝐵𝐶 = 𝐷))

Proof of Theorem neorian
StepHypRef Expression
1 df-ne 2927 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 df-ne 2927 . . 3 (𝐶𝐷 ↔ ¬ 𝐶 = 𝐷)
31, 2orbi12i 914 . 2 ((𝐴𝐵𝐶𝐷) ↔ (¬ 𝐴 = 𝐵 ∨ ¬ 𝐶 = 𝐷))
4 ianor 983 . 2 (¬ (𝐴 = 𝐵𝐶 = 𝐷) ↔ (¬ 𝐴 = 𝐵 ∨ ¬ 𝐶 = 𝐷))
53, 4bitr4i 278 1 ((𝐴𝐵𝐶𝐷) ↔ ¬ (𝐴 = 𝐵𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1540  wne 2926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ne 2927
This theorem is referenced by:  neneor  3026  poxp2  8125  oeoa  8564  recextlem2  11816  crne0  12186  crreczi  14200  gcdcllem3  16478  bezoutlem2  16517  nrhmzr  20453  dsmmacl  21657  mhpmulcl  22043  txhaus  23541  itg1addlem2  25605  coeaddlem  26161  dcubic  26763  creq0  32666  sibfof  34338  rrx2pnecoorneor  48708
  Copyright terms: Public domain W3C validator