| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neorian | Structured version Visualization version GIF version | ||
| Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.) |
| Ref | Expression |
|---|---|
| neorian | ⊢ ((𝐴 ≠ 𝐵 ∨ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2934 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | df-ne 2934 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
| 3 | 1, 2 | orbi12i 914 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∨ 𝐶 ≠ 𝐷) ↔ (¬ 𝐴 = 𝐵 ∨ ¬ 𝐶 = 𝐷)) |
| 4 | ianor 983 | . 2 ⊢ (¬ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷) ↔ (¬ 𝐴 = 𝐵 ∨ ¬ 𝐶 = 𝐷)) | |
| 5 | 3, 4 | bitr4i 278 | 1 ⊢ ((𝐴 ≠ 𝐵 ∨ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ne 2934 |
| This theorem is referenced by: neneor 3033 poxp2 8147 oeoa 8614 recextlem2 11873 crne0 12238 crreczi 14251 gcdcllem3 16525 bezoutlem2 16564 nrhmzr 20502 dsmmacl 21706 mhpmulcl 22092 txhaus 23590 itg1addlem2 25655 coeaddlem 26211 dcubic 26813 creq0 32718 sibfof 34377 rrx2pnecoorneor 48662 |
| Copyright terms: Public domain | W3C validator |