| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neorian | Structured version Visualization version GIF version | ||
| Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.) |
| Ref | Expression |
|---|---|
| neorian | ⊢ ((𝐴 ≠ 𝐵 ∨ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2929 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | df-ne 2929 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
| 3 | 1, 2 | orbi12i 914 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∨ 𝐶 ≠ 𝐷) ↔ (¬ 𝐴 = 𝐵 ∨ ¬ 𝐶 = 𝐷)) |
| 4 | ianor 983 | . 2 ⊢ (¬ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷) ↔ (¬ 𝐴 = 𝐵 ∨ ¬ 𝐶 = 𝐷)) | |
| 5 | 3, 4 | bitr4i 278 | 1 ⊢ ((𝐴 ≠ 𝐵 ∨ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ne 2929 |
| This theorem is referenced by: neneor 3028 poxp2 8073 oeoa 8512 recextlem2 11745 crne0 12115 crreczi 14132 gcdcllem3 16409 bezoutlem2 16448 nrhmzr 20450 dsmmacl 21676 mhpmulcl 22062 txhaus 23560 itg1addlem2 25623 coeaddlem 26179 dcubic 26781 creq0 32714 sibfof 34348 rrx2pnecoorneor 48746 |
| Copyright terms: Public domain | W3C validator |