MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neorian Structured version   Visualization version   GIF version

Theorem neorian 3029
Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.)
Assertion
Ref Expression
neorian ((𝐴𝐵𝐶𝐷) ↔ ¬ (𝐴 = 𝐵𝐶 = 𝐷))

Proof of Theorem neorian
StepHypRef Expression
1 df-ne 2933 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 df-ne 2933 . . 3 (𝐶𝐷 ↔ ¬ 𝐶 = 𝐷)
31, 2orbi12i 911 . 2 ((𝐴𝐵𝐶𝐷) ↔ (¬ 𝐴 = 𝐵 ∨ ¬ 𝐶 = 𝐷))
4 ianor 978 . 2 (¬ (𝐴 = 𝐵𝐶 = 𝐷) ↔ (¬ 𝐴 = 𝐵 ∨ ¬ 𝐶 = 𝐷))
53, 4bitr4i 278 1 ((𝐴𝐵𝐶𝐷) ↔ ¬ (𝐴 = 𝐵𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  wo 844   = wceq 1533  wne 2932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-ne 2933
This theorem is referenced by:  neneor  3034  poxp2  8124  oeoa  8593  recextlem2  11843  crne0  12203  crreczi  14189  gcdcllem3  16441  bezoutlem2  16481  nrhmzr  20429  dsmmacl  21606  mhpmulcl  22002  txhaus  23475  itg1addlem2  25550  coeaddlem  26105  dcubic  26697  creq0  32432  sibfof  33831  rrx2pnecoorneor  47614
  Copyright terms: Public domain W3C validator