MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neorian Structured version   Visualization version   GIF version

Theorem neorian 3024
Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.)
Assertion
Ref Expression
neorian ((𝐴𝐵𝐶𝐷) ↔ ¬ (𝐴 = 𝐵𝐶 = 𝐷))

Proof of Theorem neorian
StepHypRef Expression
1 df-ne 2930 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 df-ne 2930 . . 3 (𝐶𝐷 ↔ ¬ 𝐶 = 𝐷)
31, 2orbi12i 914 . 2 ((𝐴𝐵𝐶𝐷) ↔ (¬ 𝐴 = 𝐵 ∨ ¬ 𝐶 = 𝐷))
4 ianor 983 . 2 (¬ (𝐴 = 𝐵𝐶 = 𝐷) ↔ (¬ 𝐴 = 𝐵 ∨ ¬ 𝐶 = 𝐷))
53, 4bitr4i 278 1 ((𝐴𝐵𝐶𝐷) ↔ ¬ (𝐴 = 𝐵𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  wo 847   = wceq 1541  wne 2929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ne 2930
This theorem is referenced by:  neneor  3029  poxp2  8079  oeoa  8518  recextlem2  11755  crne0  12125  crreczi  14137  gcdcllem3  16414  bezoutlem2  16453  nrhmzr  20454  dsmmacl  21680  mhpmulcl  22065  txhaus  23563  itg1addlem2  25626  coeaddlem  26182  dcubic  26784  creq0  32723  sibfof  34374  rrx2pnecoorneor  48840
  Copyright terms: Public domain W3C validator