MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neorian Structured version   Visualization version   GIF version

Theorem neorian 3038
Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.)
Assertion
Ref Expression
neorian ((𝐴𝐵𝐶𝐷) ↔ ¬ (𝐴 = 𝐵𝐶 = 𝐷))

Proof of Theorem neorian
StepHypRef Expression
1 df-ne 2943 . . 3 (𝐴𝐵 ↔ ¬ 𝐴 = 𝐵)
2 df-ne 2943 . . 3 (𝐶𝐷 ↔ ¬ 𝐶 = 𝐷)
31, 2orbi12i 911 . 2 ((𝐴𝐵𝐶𝐷) ↔ (¬ 𝐴 = 𝐵 ∨ ¬ 𝐶 = 𝐷))
4 ianor 978 . 2 (¬ (𝐴 = 𝐵𝐶 = 𝐷) ↔ (¬ 𝐴 = 𝐵 ∨ ¬ 𝐶 = 𝐷))
53, 4bitr4i 277 1 ((𝐴𝐵𝐶𝐷) ↔ ¬ (𝐴 = 𝐵𝐶 = 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  wa 395  wo 843   = wceq 1539  wne 2942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ne 2943
This theorem is referenced by:  neneor  3043  oeoa  8390  recextlem2  11536  crne0  11896  crreczi  13871  gcdcllem3  16136  bezoutlem2  16176  dsmmacl  20858  mhpmulcl  21249  txhaus  22706  itg1addlem2  24766  coeaddlem  25315  dcubic  25901  creq0  30972  sibfof  32207  poxp2  33717  nrhmzr  45319  rrx2pnecoorneor  45949
  Copyright terms: Public domain W3C validator