| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neorian | Structured version Visualization version GIF version | ||
| Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.) |
| Ref | Expression |
|---|---|
| neorian | ⊢ ((𝐴 ≠ 𝐵 ∨ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2930 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | df-ne 2930 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
| 3 | 1, 2 | orbi12i 914 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∨ 𝐶 ≠ 𝐷) ↔ (¬ 𝐴 = 𝐵 ∨ ¬ 𝐶 = 𝐷)) |
| 4 | ianor 983 | . 2 ⊢ (¬ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷) ↔ (¬ 𝐴 = 𝐵 ∨ ¬ 𝐶 = 𝐷)) | |
| 5 | 3, 4 | bitr4i 278 | 1 ⊢ ((𝐴 ≠ 𝐵 ∨ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ≠ wne 2929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ne 2930 |
| This theorem is referenced by: neneor 3029 poxp2 8079 oeoa 8518 recextlem2 11755 crne0 12125 crreczi 14137 gcdcllem3 16414 bezoutlem2 16453 nrhmzr 20454 dsmmacl 21680 mhpmulcl 22065 txhaus 23563 itg1addlem2 25626 coeaddlem 26182 dcubic 26784 creq0 32723 sibfof 34374 rrx2pnecoorneor 48840 |
| Copyright terms: Public domain | W3C validator |