![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neorian | Structured version Visualization version GIF version |
Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.) |
Ref | Expression |
---|---|
neorian | ⊢ ((𝐴 ≠ 𝐵 ∨ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2947 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | df-ne 2947 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
3 | 1, 2 | orbi12i 913 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∨ 𝐶 ≠ 𝐷) ↔ (¬ 𝐴 = 𝐵 ∨ ¬ 𝐶 = 𝐷)) |
4 | ianor 982 | . 2 ⊢ (¬ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷) ↔ (¬ 𝐴 = 𝐵 ∨ ¬ 𝐶 = 𝐷)) | |
5 | 3, 4 | bitr4i 278 | 1 ⊢ ((𝐴 ≠ 𝐵 ∨ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∧ 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ne 2947 |
This theorem is referenced by: neneor 3048 poxp2 8184 oeoa 8653 recextlem2 11921 crne0 12286 crreczi 14277 gcdcllem3 16547 bezoutlem2 16587 nrhmzr 20563 dsmmacl 21784 mhpmulcl 22176 txhaus 23676 itg1addlem2 25751 coeaddlem 26308 dcubic 26907 creq0 32749 sibfof 34305 rrx2pnecoorneor 48449 |
Copyright terms: Public domain | W3C validator |