| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neanior | Structured version Visualization version GIF version | ||
| Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.) |
| Ref | Expression |
|---|---|
| neanior | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2927 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | df-ne 2927 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
| 3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷)) |
| 4 | pm4.56 990 | . 2 ⊢ ((¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ne 2927 |
| This theorem is referenced by: nelpri 4622 nelprd 4624 eldifpr 4625 0nelop 5459 om00 8542 om00el 8543 oeoe 8566 mulne0b 11826 xmulpnf1 13241 lcmgcd 16584 lcmdvds 16585 domnmuln0 20625 isdomn3 20631 drngmulne0 20678 abvn0b 20752 lvecvsn0 21026 mdetralt 22502 ply1domn 26036 vieta1lem1 26225 vieta1lem2 26226 atandm 26793 atandm3 26795 dchrelbas3 27156 mulsne0bd 28096 eupth2lem3lem7 30170 frgrreg 30330 nmlno0lem 30729 nmlnop0iALT 31931 chirredi 32330 nelpr 32467 minplyirred 33708 subfacp1lem1 35173 filnetlem4 36376 disjecxrn 38382 lcvbr3 39023 cvrnbtwn4 39279 elpadd0 39810 cdleme0moN 40226 cdleme0nex 40291 mulltgt0d 42477 mullt0b2d 42479 sn-mullt0d 42480 fsuppind 42585 lidldomnnring 48228 |
| Copyright terms: Public domain | W3C validator |