| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neanior | Structured version Visualization version GIF version | ||
| Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.) |
| Ref | Expression |
|---|---|
| neanior | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2929 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | df-ne 2929 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
| 3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷)) |
| 4 | pm4.56 990 | . 2 ⊢ ((¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ≠ wne 2928 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ne 2929 |
| This theorem is referenced by: nelpri 4605 nelprd 4607 eldifpr 4608 0nelop 5434 om00 8490 om00el 8491 oeoe 8514 mulne0b 11758 xmulpnf1 13173 lcmgcd 16518 lcmdvds 16519 domnmuln0 20624 isdomn3 20630 drngmulne0 20677 abvn0b 20751 lvecvsn0 21046 mdetralt 22523 ply1domn 26056 vieta1lem1 26245 vieta1lem2 26246 atandm 26813 atandm3 26815 dchrelbas3 27176 mulsne0bd 28125 eupth2lem3lem7 30214 frgrreg 30374 nmlno0lem 30773 nmlnop0iALT 31975 chirredi 32374 nelpr 32511 minplyirred 33724 subfacp1lem1 35223 filnetlem4 36423 disjecxrn 38429 lcvbr3 39070 cvrnbtwn4 39326 elpadd0 39856 cdleme0moN 40272 cdleme0nex 40337 mulltgt0d 42523 mullt0b2d 42525 sn-mullt0d 42526 fsuppind 42631 lidldomnnring 48275 |
| Copyright terms: Public domain | W3C validator |