Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > neanior | Structured version Visualization version GIF version |
Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.) |
Ref | Expression |
---|---|
neanior | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2943 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | df-ne 2943 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
3 | 1, 2 | anbi12i 626 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷)) |
4 | pm4.56 985 | . 2 ⊢ ((¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) | |
5 | 3, 4 | bitri 274 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 843 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ne 2943 |
This theorem is referenced by: nelpri 4587 nelprd 4589 eldifpr 4590 0nelop 5404 om00 8368 om00el 8369 oeoe 8392 mulne0b 11546 xmulpnf1 12937 lcmgcd 16240 lcmdvds 16241 drngmulne0 19928 lvecvsn0 20286 domnmuln0 20482 abvn0b 20486 mdetralt 21665 ply1domn 25193 vieta1lem1 25375 vieta1lem2 25376 atandm 25931 atandm3 25933 dchrelbas3 26291 eupth2lem3lem7 28499 frgrreg 28659 nmlno0lem 29056 nmlnop0iALT 30258 chirredi 30657 nelpr 30780 subfacp1lem1 33041 filnetlem4 34497 lcvbr3 36964 cvrnbtwn4 37220 elpadd0 37750 cdleme0moN 38166 cdleme0nex 38231 fsuppind 40202 isdomn3 40945 lidldomnnring 45376 |
Copyright terms: Public domain | W3C validator |