| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neanior | Structured version Visualization version GIF version | ||
| Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.) |
| Ref | Expression |
|---|---|
| neanior | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | df-ne 2926 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
| 3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷)) |
| 4 | pm4.56 990 | . 2 ⊢ ((¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ne 2926 |
| This theorem is referenced by: nelpri 4619 nelprd 4621 eldifpr 4622 0nelop 5456 om00 8539 om00el 8540 oeoe 8563 mulne0b 11819 xmulpnf1 13234 lcmgcd 16577 lcmdvds 16578 domnmuln0 20618 isdomn3 20624 drngmulne0 20671 abvn0b 20745 lvecvsn0 21019 mdetralt 22495 ply1domn 26029 vieta1lem1 26218 vieta1lem2 26219 atandm 26786 atandm3 26788 dchrelbas3 27149 mulsne0bd 28089 eupth2lem3lem7 30163 frgrreg 30323 nmlno0lem 30722 nmlnop0iALT 31924 chirredi 32323 nelpr 32460 minplyirred 33701 subfacp1lem1 35166 filnetlem4 36369 disjecxrn 38375 lcvbr3 39016 cvrnbtwn4 39272 elpadd0 39803 cdleme0moN 40219 cdleme0nex 40284 mulltgt0d 42470 mullt0b2d 42472 sn-mullt0d 42473 fsuppind 42578 lidldomnnring 48224 |
| Copyright terms: Public domain | W3C validator |