| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neanior | Structured version Visualization version GIF version | ||
| Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.) |
| Ref | Expression |
|---|---|
| neanior | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2941 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | df-ne 2941 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
| 3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷)) |
| 4 | pm4.56 991 | . 2 ⊢ ((¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 848 = wceq 1540 ≠ wne 2940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ne 2941 |
| This theorem is referenced by: nelpri 4655 nelprd 4657 eldifpr 4658 0nelop 5501 om00 8613 om00el 8614 oeoe 8637 mulne0b 11904 xmulpnf1 13316 lcmgcd 16644 lcmdvds 16645 domnmuln0 20709 isdomn3 20715 drngmulne0 20762 abvn0b 20837 lvecvsn0 21111 mdetralt 22614 ply1domn 26163 vieta1lem1 26352 vieta1lem2 26353 atandm 26919 atandm3 26921 dchrelbas3 27282 mulsne0bd 28212 eupth2lem3lem7 30253 frgrreg 30413 nmlno0lem 30812 nmlnop0iALT 32014 chirredi 32413 nelpr 32549 minplyirred 33754 subfacp1lem1 35184 filnetlem4 36382 disjecxrn 38390 lcvbr3 39024 cvrnbtwn4 39280 elpadd0 39811 cdleme0moN 40227 cdleme0nex 40292 fsuppind 42600 lidldomnnring 48152 |
| Copyright terms: Public domain | W3C validator |