| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neanior | Structured version Visualization version GIF version | ||
| Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.) |
| Ref | Expression |
|---|---|
| neanior | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | df-ne 2926 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
| 3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷)) |
| 4 | pm4.56 990 | . 2 ⊢ ((¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ne 2926 |
| This theorem is referenced by: nelpri 4615 nelprd 4617 eldifpr 4618 0nelop 5451 om00 8516 om00el 8517 oeoe 8540 mulne0b 11795 xmulpnf1 13210 lcmgcd 16553 lcmdvds 16554 domnmuln0 20594 isdomn3 20600 drngmulne0 20647 abvn0b 20721 lvecvsn0 20995 mdetralt 22471 ply1domn 26005 vieta1lem1 26194 vieta1lem2 26195 atandm 26762 atandm3 26764 dchrelbas3 27125 mulsne0bd 28065 eupth2lem3lem7 30136 frgrreg 30296 nmlno0lem 30695 nmlnop0iALT 31897 chirredi 32296 nelpr 32433 minplyirred 33674 subfacp1lem1 35139 filnetlem4 36342 disjecxrn 38348 lcvbr3 38989 cvrnbtwn4 39245 elpadd0 39776 cdleme0moN 40192 cdleme0nex 40257 mulltgt0d 42443 mullt0b2d 42445 sn-mullt0d 42446 fsuppind 42551 lidldomnnring 48197 |
| Copyright terms: Public domain | W3C validator |