![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neanior | Structured version Visualization version GIF version |
Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.) |
Ref | Expression |
---|---|
neanior | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2941 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | df-ne 2941 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
3 | 1, 2 | anbi12i 627 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷)) |
4 | pm4.56 987 | . 2 ⊢ ((¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) | |
5 | 3, 4 | bitri 274 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 396 ∨ wo 845 = wceq 1541 ≠ wne 2940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ne 2941 |
This theorem is referenced by: nelpri 4656 nelprd 4658 eldifpr 4659 0nelop 5495 om00 8571 om00el 8572 oeoe 8595 mulne0b 11851 xmulpnf1 13249 lcmgcd 16540 lcmdvds 16541 drngmulne0 20337 lvecvsn0 20714 domnmuln0 20906 abvn0b 20912 mdetralt 22101 ply1domn 25632 vieta1lem1 25814 vieta1lem2 25815 atandm 26370 atandm3 26372 dchrelbas3 26730 eupth2lem3lem7 29476 frgrreg 29636 nmlno0lem 30033 nmlnop0iALT 31235 chirredi 31634 nelpr 31755 minplyirred 32758 subfacp1lem1 34158 filnetlem4 35254 disjecxrn 37247 lcvbr3 37881 cvrnbtwn4 38137 elpadd0 38668 cdleme0moN 39084 cdleme0nex 39149 fsuppind 41159 isdomn3 41931 lidldomnnring 46781 |
Copyright terms: Public domain | W3C validator |