![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neanior | Structured version Visualization version GIF version |
Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.) |
Ref | Expression |
---|---|
neanior | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2935 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | df-ne 2935 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
3 | 1, 2 | anbi12i 626 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷)) |
4 | pm4.56 985 | . 2 ⊢ ((¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) | |
5 | 3, 4 | bitri 275 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 844 = wceq 1533 ≠ wne 2934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-ne 2935 |
This theorem is referenced by: nelpri 4652 nelprd 4654 eldifpr 4655 0nelop 5489 om00 8576 om00el 8577 oeoe 8600 mulne0b 11859 xmulpnf1 13259 lcmgcd 16551 lcmdvds 16552 drngmulne0 20617 lvecvsn0 20960 domnmuln0 21208 abvn0b 21214 mdetralt 22465 ply1domn 26014 vieta1lem1 26200 vieta1lem2 26201 atandm 26763 atandm3 26765 dchrelbas3 27126 mulsne0bd 28041 eupth2lem3lem7 29996 frgrreg 30156 nmlno0lem 30555 nmlnop0iALT 31757 chirredi 32156 nelpr 32277 minplyirred 33290 subfacp1lem1 34698 filnetlem4 35774 disjecxrn 37772 lcvbr3 38406 cvrnbtwn4 38662 elpadd0 39193 cdleme0moN 39609 cdleme0nex 39674 fsuppind 41724 isdomn3 42528 lidldomnnring 47191 |
Copyright terms: Public domain | W3C validator |