| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neanior | Structured version Visualization version GIF version | ||
| Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.) |
| Ref | Expression |
|---|---|
| neanior | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2933 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | df-ne 2933 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
| 3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷)) |
| 4 | pm4.56 990 | . 2 ⊢ ((¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ne 2933 |
| This theorem is referenced by: nelpri 4631 nelprd 4633 eldifpr 4634 0nelop 5471 om00 8587 om00el 8588 oeoe 8611 mulne0b 11878 xmulpnf1 13290 lcmgcd 16626 lcmdvds 16627 domnmuln0 20669 isdomn3 20675 drngmulne0 20722 abvn0b 20796 lvecvsn0 21070 mdetralt 22546 ply1domn 26081 vieta1lem1 26270 vieta1lem2 26271 atandm 26838 atandm3 26840 dchrelbas3 27201 mulsne0bd 28141 eupth2lem3lem7 30215 frgrreg 30375 nmlno0lem 30774 nmlnop0iALT 31976 chirredi 32375 nelpr 32512 minplyirred 33745 subfacp1lem1 35201 filnetlem4 36399 disjecxrn 38407 lcvbr3 39041 cvrnbtwn4 39297 elpadd0 39828 cdleme0moN 40244 cdleme0nex 40309 fsuppind 42613 lidldomnnring 48211 |
| Copyright terms: Public domain | W3C validator |