| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > neanior | Structured version Visualization version GIF version | ||
| Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.) |
| Ref | Expression |
|---|---|
| neanior | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2926 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
| 2 | df-ne 2926 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
| 3 | 1, 2 | anbi12i 628 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷)) |
| 4 | pm4.56 990 | . 2 ⊢ ((¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) | |
| 5 | 3, 4 | bitri 275 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ne 2926 |
| This theorem is referenced by: nelpri 4607 nelprd 4609 eldifpr 4610 0nelop 5439 om00 8493 om00el 8494 oeoe 8517 mulne0b 11761 xmulpnf1 13176 lcmgcd 16518 lcmdvds 16519 domnmuln0 20594 isdomn3 20600 drngmulne0 20647 abvn0b 20721 lvecvsn0 21016 mdetralt 22493 ply1domn 26027 vieta1lem1 26216 vieta1lem2 26217 atandm 26784 atandm3 26786 dchrelbas3 27147 mulsne0bd 28094 eupth2lem3lem7 30178 frgrreg 30338 nmlno0lem 30737 nmlnop0iALT 31939 chirredi 32338 nelpr 32475 minplyirred 33678 subfacp1lem1 35152 filnetlem4 36355 disjecxrn 38361 lcvbr3 39002 cvrnbtwn4 39258 elpadd0 39788 cdleme0moN 40204 cdleme0nex 40269 mulltgt0d 42455 mullt0b2d 42457 sn-mullt0d 42458 fsuppind 42563 lidldomnnring 48220 |
| Copyright terms: Public domain | W3C validator |