![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neanior | Structured version Visualization version GIF version |
Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.) |
Ref | Expression |
---|---|
neanior | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2939 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | df-ne 2939 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
3 | 1, 2 | anbi12i 625 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷)) |
4 | pm4.56 985 | . 2 ⊢ ((¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) | |
5 | 3, 4 | bitri 274 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 394 ∨ wo 843 = wceq 1539 ≠ wne 2938 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-ne 2939 |
This theorem is referenced by: nelpri 4656 nelprd 4658 eldifpr 4659 0nelop 5495 om00 8577 om00el 8578 oeoe 8601 mulne0b 11859 xmulpnf1 13257 lcmgcd 16548 lcmdvds 16549 drngmulne0 20530 lvecvsn0 20867 domnmuln0 21114 abvn0b 21120 mdetralt 22330 ply1domn 25876 vieta1lem1 26059 vieta1lem2 26060 atandm 26617 atandm3 26619 dchrelbas3 26977 eupth2lem3lem7 29754 frgrreg 29914 nmlno0lem 30313 nmlnop0iALT 31515 chirredi 31914 nelpr 32035 minplyirred 33059 subfacp1lem1 34468 filnetlem4 35569 disjecxrn 37562 lcvbr3 38196 cvrnbtwn4 38452 elpadd0 38983 cdleme0moN 39399 cdleme0nex 39464 fsuppind 41464 isdomn3 42248 lidldomnnring 46916 |
Copyright terms: Public domain | W3C validator |