![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > neanior | Structured version Visualization version GIF version |
Description: A De Morgan's law for inequality. (Contributed by NM, 18-May-2007.) |
Ref | Expression |
---|---|
neanior | ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ne 2947 | . . 3 ⊢ (𝐴 ≠ 𝐵 ↔ ¬ 𝐴 = 𝐵) | |
2 | df-ne 2947 | . . 3 ⊢ (𝐶 ≠ 𝐷 ↔ ¬ 𝐶 = 𝐷) | |
3 | 1, 2 | anbi12i 627 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ (¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷)) |
4 | pm4.56 989 | . 2 ⊢ ((¬ 𝐴 = 𝐵 ∧ ¬ 𝐶 = 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) | |
5 | 3, 4 | bitri 275 | 1 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐶 ≠ 𝐷) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐶 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 846 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ne 2947 |
This theorem is referenced by: nelpri 4677 nelprd 4679 eldifpr 4680 0nelop 5515 om00 8631 om00el 8632 oeoe 8655 mulne0b 11931 xmulpnf1 13336 lcmgcd 16654 lcmdvds 16655 domnmuln0 20731 isdomn3 20737 drngmulne0 20784 abvn0b 20859 lvecvsn0 21134 mdetralt 22635 ply1domn 26183 vieta1lem1 26370 vieta1lem2 26371 atandm 26937 atandm3 26939 dchrelbas3 27300 mulsne0bd 28230 eupth2lem3lem7 30266 frgrreg 30426 nmlno0lem 30825 nmlnop0iALT 32027 chirredi 32426 nelpr 32559 minplyirred 33704 subfacp1lem1 35147 filnetlem4 36347 disjecxrn 38345 lcvbr3 38979 cvrnbtwn4 39235 elpadd0 39766 cdleme0moN 40182 cdleme0nex 40247 fsuppind 42545 lidldomnnring 47959 |
Copyright terms: Public domain | W3C validator |