Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldiftp Structured version   Visualization version   GIF version

Theorem eldiftp 4596
 Description: Membership in a set with three elements removed. Similar to eldifsn 4691 and eldifpr 4569. (Contributed by David A. Wheeler, 22-Jul-2017.)
Assertion
Ref Expression
eldiftp (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷, 𝐸}) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷𝐴𝐸)))

Proof of Theorem eldiftp
StepHypRef Expression
1 eldif 3919 . 2 (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷, 𝐸}) ↔ (𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷, 𝐸}))
2 eltpg 4595 . . . . 5 (𝐴𝐵 → (𝐴 ∈ {𝐶, 𝐷, 𝐸} ↔ (𝐴 = 𝐶𝐴 = 𝐷𝐴 = 𝐸)))
32notbid 320 . . . 4 (𝐴𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷, 𝐸} ↔ ¬ (𝐴 = 𝐶𝐴 = 𝐷𝐴 = 𝐸)))
4 ne3anior 3099 . . . 4 ((𝐴𝐶𝐴𝐷𝐴𝐸) ↔ ¬ (𝐴 = 𝐶𝐴 = 𝐷𝐴 = 𝐸))
53, 4syl6bbr 291 . . 3 (𝐴𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷, 𝐸} ↔ (𝐴𝐶𝐴𝐷𝐴𝐸)))
65pm5.32i 577 . 2 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷, 𝐸}) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷𝐴𝐸)))
71, 6bitri 277 1 (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷, 𝐸}) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷𝐴𝐸)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   ↔ wb 208   ∧ wa 398   ∨ w3o 1082   ∧ w3a 1083   = wceq 1537   ∈ wcel 2114   ≠ wne 3006   ∖ cdif 3906  {ctp 4543 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-ext 2792 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-sb 2070  df-clab 2799  df-cleq 2813  df-clel 2891  df-ne 3007  df-v 3472  df-dif 3912  df-un 3914  df-sn 4540  df-pr 4542  df-tp 4544 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator