MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eldiftp Structured version   Visualization version   GIF version

Theorem eldiftp 4637
Description: Membership in a set with three elements removed. Similar to eldifsn 4735 and eldifpr 4608. (Contributed by David A. Wheeler, 22-Jul-2017.)
Assertion
Ref Expression
eldiftp (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷, 𝐸}) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷𝐴𝐸)))

Proof of Theorem eldiftp
StepHypRef Expression
1 eldif 3907 . 2 (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷, 𝐸}) ↔ (𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷, 𝐸}))
2 eltpg 4636 . . . . 5 (𝐴𝐵 → (𝐴 ∈ {𝐶, 𝐷, 𝐸} ↔ (𝐴 = 𝐶𝐴 = 𝐷𝐴 = 𝐸)))
32notbid 318 . . . 4 (𝐴𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷, 𝐸} ↔ ¬ (𝐴 = 𝐶𝐴 = 𝐷𝐴 = 𝐸)))
4 ne3anior 3022 . . . 4 ((𝐴𝐶𝐴𝐷𝐴𝐸) ↔ ¬ (𝐴 = 𝐶𝐴 = 𝐷𝐴 = 𝐸))
53, 4bitr4di 289 . . 3 (𝐴𝐵 → (¬ 𝐴 ∈ {𝐶, 𝐷, 𝐸} ↔ (𝐴𝐶𝐴𝐷𝐴𝐸)))
65pm5.32i 574 . 2 ((𝐴𝐵 ∧ ¬ 𝐴 ∈ {𝐶, 𝐷, 𝐸}) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷𝐴𝐸)))
71, 6bitri 275 1 (𝐴 ∈ (𝐵 ∖ {𝐶, 𝐷, 𝐸}) ↔ (𝐴𝐵 ∧ (𝐴𝐶𝐴𝐷𝐴𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1541  wcel 2111  wne 2928  cdif 3894  {ctp 4577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-v 3438  df-dif 3900  df-un 3902  df-sn 4574  df-pr 4576  df-tp 4578
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator