MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3orbi123i Structured version   Visualization version   GIF version

Theorem 3orbi123i 1155
Description: Join 3 biconditionals with disjunction. (Contributed by NM, 17-May-1994.)
Hypotheses
Ref Expression
bi3.1 (𝜑𝜓)
bi3.2 (𝜒𝜃)
bi3.3 (𝜏𝜂)
Assertion
Ref Expression
3orbi123i ((𝜑𝜒𝜏) ↔ (𝜓𝜃𝜂))

Proof of Theorem 3orbi123i
StepHypRef Expression
1 bi3.1 . . . 4 (𝜑𝜓)
2 bi3.2 . . . 4 (𝜒𝜃)
31, 2orbi12i 912 . . 3 ((𝜑𝜒) ↔ (𝜓𝜃))
4 bi3.3 . . 3 (𝜏𝜂)
53, 4orbi12i 912 . 2 (((𝜑𝜒) ∨ 𝜏) ↔ ((𝜓𝜃) ∨ 𝜂))
6 df-3or 1087 . 2 ((𝜑𝜒𝜏) ↔ ((𝜑𝜒) ∨ 𝜏))
7 df-3or 1087 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∨ 𝜂))
85, 6, 73bitr4i 303 1 ((𝜑𝜒𝜏) ↔ (𝜓𝜃𝜂))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wo 844  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-or 845  df-3or 1087
This theorem is referenced by:  ne3anior  3038  wecmpep  5581  cnvso  6191  sorpss  7581  epweon  7625  epweonOLD  7626  soxp  7970  dford2  9378  elfz0lmr  13502  axlowdimlem6  27315  elxrge02  31206  brtp  33717  dfon2  33768  poxp3  33796  sltsolem1  33878  frege129d  41371  dfxlim2  43389
  Copyright terms: Public domain W3C validator