| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orbi123i | Structured version Visualization version GIF version | ||
| Description: Join 3 biconditionals with disjunction. (Contributed by NM, 17-May-1994.) |
| Ref | Expression |
|---|---|
| bi3.1 | ⊢ (𝜑 ↔ 𝜓) |
| bi3.2 | ⊢ (𝜒 ↔ 𝜃) |
| bi3.3 | ⊢ (𝜏 ↔ 𝜂) |
| Ref | Expression |
|---|---|
| 3orbi123i | ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨ 𝜃 ∨ 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bi3.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 1, 2 | orbi12i 914 | . . 3 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
| 4 | bi3.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
| 5 | 3, 4 | orbi12i 914 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) |
| 6 | df-3or 1087 | . 2 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ ((𝜑 ∨ 𝜒) ∨ 𝜏)) | |
| 7 | df-3or 1087 | . 2 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨ 𝜃 ∨ 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: ne3anior 3025 otthne 5471 brtp 5508 wecmpep 5657 cnvso 6288 sorpss 7730 epweon 7777 epweonALT 7778 soxp 8136 dford2 9642 elfz0lmr 13803 hash3tpde 14514 sltsolem1 27656 axlowdimlem6 28892 elxrge02 32854 constrcbvlem 33735 dfon2 35752 frege129d 43738 dfxlim2 45820 usgrexmpl2trifr 47954 |
| Copyright terms: Public domain | W3C validator |