| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orbi123i | Structured version Visualization version GIF version | ||
| Description: Join 3 biconditionals with disjunction. (Contributed by NM, 17-May-1994.) |
| Ref | Expression |
|---|---|
| bi3.1 | ⊢ (𝜑 ↔ 𝜓) |
| bi3.2 | ⊢ (𝜒 ↔ 𝜃) |
| bi3.3 | ⊢ (𝜏 ↔ 𝜂) |
| Ref | Expression |
|---|---|
| 3orbi123i | ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨ 𝜃 ∨ 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bi3.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 1, 2 | orbi12i 914 | . . 3 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
| 4 | bi3.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
| 5 | 3, 4 | orbi12i 914 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) |
| 6 | df-3or 1087 | . 2 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ ((𝜑 ∨ 𝜒) ∨ 𝜏)) | |
| 7 | df-3or 1087 | . 2 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨ 𝜃 ∨ 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: ne3anior 3020 otthne 5424 brtp 5461 wecmpep 5606 cnvso 6231 sorpss 7656 epweon 7703 epweonALT 7704 soxp 8054 dford2 9505 elfz0lmr 13675 hash3tpde 14392 sltsolem1 27607 axlowdimlem6 28918 elxrge02 32902 constrcbvlem 33758 dfon2 35805 frege129d 43775 dfxlim2 45865 usgrexmpl2trifr 48047 |
| Copyright terms: Public domain | W3C validator |