Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 3orbi123i | Structured version Visualization version GIF version |
Description: Join 3 biconditionals with disjunction. (Contributed by NM, 17-May-1994.) |
Ref | Expression |
---|---|
bi3.1 | ⊢ (𝜑 ↔ 𝜓) |
bi3.2 | ⊢ (𝜒 ↔ 𝜃) |
bi3.3 | ⊢ (𝜏 ↔ 𝜂) |
Ref | Expression |
---|---|
3orbi123i | ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨ 𝜃 ∨ 𝜂)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi3.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
2 | bi3.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
3 | 1, 2 | orbi12i 912 | . . 3 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
4 | bi3.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
5 | 3, 4 | orbi12i 912 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) |
6 | df-3or 1087 | . 2 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ ((𝜑 ∨ 𝜒) ∨ 𝜏)) | |
7 | df-3or 1087 | . 2 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) | |
8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨ 𝜃 ∨ 𝜂)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∨ wo 844 ∨ w3o 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-or 845 df-3or 1087 |
This theorem is referenced by: ne3anior 3038 wecmpep 5581 cnvso 6191 sorpss 7581 epweon 7625 epweonOLD 7626 soxp 7970 dford2 9378 elfz0lmr 13502 axlowdimlem6 27315 elxrge02 31206 brtp 33717 dfon2 33768 poxp3 33796 sltsolem1 33878 frege129d 41371 dfxlim2 43389 |
Copyright terms: Public domain | W3C validator |