| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orbi123i | Structured version Visualization version GIF version | ||
| Description: Join 3 biconditionals with disjunction. (Contributed by NM, 17-May-1994.) |
| Ref | Expression |
|---|---|
| bi3.1 | ⊢ (𝜑 ↔ 𝜓) |
| bi3.2 | ⊢ (𝜒 ↔ 𝜃) |
| bi3.3 | ⊢ (𝜏 ↔ 𝜂) |
| Ref | Expression |
|---|---|
| 3orbi123i | ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨ 𝜃 ∨ 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bi3.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 1, 2 | orbi12i 914 | . . 3 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
| 4 | bi3.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
| 5 | 3, 4 | orbi12i 914 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) |
| 6 | df-3or 1087 | . 2 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ ((𝜑 ∨ 𝜒) ∨ 𝜏)) | |
| 7 | df-3or 1087 | . 2 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨ 𝜃 ∨ 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: ne3anior 3020 otthne 5449 brtp 5486 wecmpep 5633 cnvso 6264 sorpss 7707 epweon 7754 epweonALT 7755 soxp 8111 dford2 9580 elfz0lmr 13750 hash3tpde 14465 sltsolem1 27594 axlowdimlem6 28881 elxrge02 32859 constrcbvlem 33752 dfon2 35787 frege129d 43759 dfxlim2 45853 usgrexmpl2trifr 48032 |
| Copyright terms: Public domain | W3C validator |