MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3orbi123i Structured version   Visualization version   GIF version

Theorem 3orbi123i 1156
Description: Join 3 biconditionals with disjunction. (Contributed by NM, 17-May-1994.)
Hypotheses
Ref Expression
bi3.1 (𝜑𝜓)
bi3.2 (𝜒𝜃)
bi3.3 (𝜏𝜂)
Assertion
Ref Expression
3orbi123i ((𝜑𝜒𝜏) ↔ (𝜓𝜃𝜂))

Proof of Theorem 3orbi123i
StepHypRef Expression
1 bi3.1 . . . 4 (𝜑𝜓)
2 bi3.2 . . . 4 (𝜒𝜃)
31, 2orbi12i 914 . . 3 ((𝜑𝜒) ↔ (𝜓𝜃))
4 bi3.3 . . 3 (𝜏𝜂)
53, 4orbi12i 914 . 2 (((𝜑𝜒) ∨ 𝜏) ↔ ((𝜓𝜃) ∨ 𝜂))
6 df-3or 1087 . 2 ((𝜑𝜒𝜏) ↔ ((𝜑𝜒) ∨ 𝜏))
7 df-3or 1087 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∨ 𝜂))
85, 6, 73bitr4i 303 1 ((𝜑𝜒𝜏) ↔ (𝜓𝜃𝜂))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  ne3anior  3024  otthne  5431  brtp  5468  wecmpep  5613  cnvso  6243  sorpss  7670  epweon  7717  epweonALT  7718  soxp  8068  dford2  9520  elfz0lmr  13693  hash3tpde  14410  sltsolem1  27624  axlowdimlem6  28936  elxrge02  32923  constrcbvlem  33779  dfon2  35845  frege129d  43870  dfxlim2  45960  usgrexmpl2trifr  48151
  Copyright terms: Public domain W3C validator