MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3orbi123i Structured version   Visualization version   GIF version

Theorem 3orbi123i 1156
Description: Join 3 biconditionals with disjunction. (Contributed by NM, 17-May-1994.)
Hypotheses
Ref Expression
bi3.1 (𝜑𝜓)
bi3.2 (𝜒𝜃)
bi3.3 (𝜏𝜂)
Assertion
Ref Expression
3orbi123i ((𝜑𝜒𝜏) ↔ (𝜓𝜃𝜂))

Proof of Theorem 3orbi123i
StepHypRef Expression
1 bi3.1 . . . 4 (𝜑𝜓)
2 bi3.2 . . . 4 (𝜒𝜃)
31, 2orbi12i 914 . . 3 ((𝜑𝜒) ↔ (𝜓𝜃))
4 bi3.3 . . 3 (𝜏𝜂)
53, 4orbi12i 914 . 2 (((𝜑𝜒) ∨ 𝜏) ↔ ((𝜓𝜃) ∨ 𝜂))
6 df-3or 1087 . 2 ((𝜑𝜒𝜏) ↔ ((𝜑𝜒) ∨ 𝜏))
7 df-3or 1087 . 2 ((𝜓𝜃𝜂) ↔ ((𝜓𝜃) ∨ 𝜂))
85, 6, 73bitr4i 303 1 ((𝜑𝜒𝜏) ↔ (𝜓𝜃𝜂))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847  w3o 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-or 848  df-3or 1087
This theorem is referenced by:  ne3anior  3025  otthne  5471  brtp  5508  wecmpep  5657  cnvso  6288  sorpss  7730  epweon  7777  epweonALT  7778  soxp  8136  dford2  9642  elfz0lmr  13803  hash3tpde  14514  sltsolem1  27656  axlowdimlem6  28892  elxrge02  32854  constrcbvlem  33735  dfon2  35752  frege129d  43738  dfxlim2  45820  usgrexmpl2trifr  47954
  Copyright terms: Public domain W3C validator