| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 3orbi123i | Structured version Visualization version GIF version | ||
| Description: Join 3 biconditionals with disjunction. (Contributed by NM, 17-May-1994.) |
| Ref | Expression |
|---|---|
| bi3.1 | ⊢ (𝜑 ↔ 𝜓) |
| bi3.2 | ⊢ (𝜒 ↔ 𝜃) |
| bi3.3 | ⊢ (𝜏 ↔ 𝜂) |
| Ref | Expression |
|---|---|
| 3orbi123i | ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨ 𝜃 ∨ 𝜂)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bi3.1 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | bi3.2 | . . . 4 ⊢ (𝜒 ↔ 𝜃) | |
| 3 | 1, 2 | orbi12i 914 | . . 3 ⊢ ((𝜑 ∨ 𝜒) ↔ (𝜓 ∨ 𝜃)) |
| 4 | bi3.3 | . . 3 ⊢ (𝜏 ↔ 𝜂) | |
| 5 | 3, 4 | orbi12i 914 | . 2 ⊢ (((𝜑 ∨ 𝜒) ∨ 𝜏) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) |
| 6 | df-3or 1087 | . 2 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ ((𝜑 ∨ 𝜒) ∨ 𝜏)) | |
| 7 | df-3or 1087 | . 2 ⊢ ((𝜓 ∨ 𝜃 ∨ 𝜂) ↔ ((𝜓 ∨ 𝜃) ∨ 𝜂)) | |
| 8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ ((𝜑 ∨ 𝜒 ∨ 𝜏) ↔ (𝜓 ∨ 𝜃 ∨ 𝜂)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∨ wo 847 ∨ w3o 1085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-or 848 df-3or 1087 |
| This theorem is referenced by: ne3anior 3019 otthne 5441 brtp 5478 wecmpep 5623 cnvso 6249 sorpss 7684 epweon 7731 epweonALT 7732 soxp 8085 dford2 9551 elfz0lmr 13721 hash3tpde 14436 sltsolem1 27621 axlowdimlem6 28928 elxrge02 32903 constrcbvlem 33739 dfon2 35774 frege129d 43746 dfxlim2 45840 usgrexmpl2trifr 48022 |
| Copyright terms: Public domain | W3C validator |