| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon1abid | Structured version Visualization version GIF version | ||
| Description: Contrapositive deduction for inequality. (Contributed by NM, 21-Aug-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) |
| Ref | Expression |
|---|---|
| necon1abid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| necon1abid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 315 | . 2 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | necon1abid.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 = 𝐵)) | |
| 3 | 2 | necon3bbid 2970 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
| 4 | 1, 3 | bitr2id 284 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2933 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2934 |
| This theorem is referenced by: sotrine 5606 lttri2 11322 xrlttri2 13163 ioon0 13393 lssne0 20913 xmetgt0 24302 |
| Copyright terms: Public domain | W3C validator |