|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > necon1abid | Structured version Visualization version GIF version | ||
| Description: Contrapositive deduction for inequality. (Contributed by NM, 21-Aug-2007.) (Proof shortened by Wolf Lammen, 24-Nov-2019.) | 
| Ref | Expression | 
|---|---|
| necon1abid.1 | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 = 𝐵)) | 
| Ref | Expression | 
|---|---|
| necon1abid | ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | notnotb 315 | . 2 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 2 | necon1abid.1 | . . 3 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 = 𝐵)) | |
| 3 | 2 | necon3bbid 2977 | . 2 ⊢ (𝜑 → (¬ ¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) | 
| 4 | 1, 3 | bitr2id 284 | 1 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ 𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1539 ≠ wne 2939 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-ne 2940 | 
| This theorem is referenced by: sotrine 5631 lttri2 11344 xrlttri2 13185 ioon0 13414 lssne0 20950 xmetgt0 24369 | 
| Copyright terms: Public domain | W3C validator |