| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lttri2 | Structured version Visualization version GIF version | ||
| Description: Consequence of trichotomy. (Contributed by NM, 9-Oct-1999.) |
| Ref | Expression |
|---|---|
| lttri2 | ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso 11193 | . . . 4 ⊢ < Or ℝ | |
| 2 | sotrieq 5555 | . . . 4 ⊢ (( < Or ℝ ∧ (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) → (𝐴 = 𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 = 𝐵 ↔ ¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| 4 | 3 | bicomd 223 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (¬ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴) ↔ 𝐴 = 𝐵)) |
| 5 | 4 | necon1abid 2966 | 1 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 ≠ 𝐵 ↔ (𝐴 < 𝐵 ∨ 𝐵 < 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 class class class wbr 5091 Or wor 5523 ℝcr 11005 < clt 11146 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11063 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-ltxr 11151 |
| This theorem is referenced by: ne0gt0 11218 lttri2i 11227 lttri2d 11252 cshwshashlem3 17009 gsummoncoe1 22224 mp2pm2mplem4 22725 chfacfscmulgsum 22776 chfacfpmmulgsum 22780 dvne0 25944 relogbf 26729 atanlogsub 26854 nn0prpw 36363 itg2addnclem2 37718 12gcd5e1 42042 hashscontpow 42161 sticksstones1 42185 sticksstones2 42186 nerabdioph 42848 rpnnen3 43071 fmul01lt1lem1 45630 |
| Copyright terms: Public domain | W3C validator |