MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sotrine Structured version   Visualization version   GIF version

Theorem sotrine 5647
Description: Trichotomy law for strict orderings. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
sotrine ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶 ↔ (𝐵𝑅𝐶𝐶𝑅𝐵)))

Proof of Theorem sotrine
StepHypRef Expression
1 sotrieq 5638 . . 3 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶𝐶𝑅𝐵)))
21bicomd 223 . 2 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (¬ (𝐵𝑅𝐶𝐶𝑅𝐵) ↔ 𝐵 = 𝐶))
32necon1abid 2985 1 ((𝑅 Or 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐶 ↔ (𝐵𝑅𝐶𝐶𝑅𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166   Or wor 5606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-po 5607  df-so 5608
This theorem is referenced by:  nosepne  27743  nosepdm  27747  slttrine  27814
  Copyright terms: Public domain W3C validator