Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sotrine | Structured version Visualization version GIF version |
Description: Trichotomy law for strict orderings. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
sotrine | ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ≠ 𝐶 ↔ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sotrieq 5532 | . . 3 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 = 𝐶 ↔ ¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) | |
2 | 1 | bicomd 222 | . 2 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (¬ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵) ↔ 𝐵 = 𝐶)) |
3 | 2 | necon1abid 2982 | 1 ⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ≠ 𝐶 ↔ (𝐵𝑅𝐶 ∨ 𝐶𝑅𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∨ wo 844 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 class class class wbr 5074 Or wor 5502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-po 5503 df-so 5504 |
This theorem is referenced by: nosepne 33883 nosepdm 33887 slttrine 33954 |
Copyright terms: Public domain | W3C validator |