![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssne0 | Structured version Visualization version GIF version |
Description: A nonzero subspace has a nonzero vector. (shne0i 31480 analog.) (Contributed by NM, 20-Apr-2014.) (Proof shortened by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lss0cl.z | ⊢ 0 = (0g‘𝑊) |
lss0cl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lssne0 | ⊢ (𝑋 ∈ 𝑆 → (𝑋 ≠ { 0 } ↔ ∃𝑦 ∈ 𝑋 𝑦 ≠ 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lss0cl.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
2 | 1 | lssn0 20961 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ≠ ∅) |
3 | eqsn 4854 | . . . 4 ⊢ (𝑋 ≠ ∅ → (𝑋 = { 0 } ↔ ∀𝑦 ∈ 𝑋 𝑦 = 0 )) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑋 ∈ 𝑆 → (𝑋 = { 0 } ↔ ∀𝑦 ∈ 𝑋 𝑦 = 0 )) |
5 | nne 2950 | . . . . 5 ⊢ (¬ 𝑦 ≠ 0 ↔ 𝑦 = 0 ) | |
6 | 5 | ralbii 3099 | . . . 4 ⊢ (∀𝑦 ∈ 𝑋 ¬ 𝑦 ≠ 0 ↔ ∀𝑦 ∈ 𝑋 𝑦 = 0 ) |
7 | ralnex 3078 | . . . 4 ⊢ (∀𝑦 ∈ 𝑋 ¬ 𝑦 ≠ 0 ↔ ¬ ∃𝑦 ∈ 𝑋 𝑦 ≠ 0 ) | |
8 | 6, 7 | bitr3i 277 | . . 3 ⊢ (∀𝑦 ∈ 𝑋 𝑦 = 0 ↔ ¬ ∃𝑦 ∈ 𝑋 𝑦 ≠ 0 ) |
9 | 4, 8 | bitr2di 288 | . 2 ⊢ (𝑋 ∈ 𝑆 → (¬ ∃𝑦 ∈ 𝑋 𝑦 ≠ 0 ↔ 𝑋 = { 0 })) |
10 | 9 | necon1abid 2985 | 1 ⊢ (𝑋 ∈ 𝑆 → (𝑋 ≠ { 0 } ↔ ∃𝑦 ∈ 𝑋 𝑦 ≠ 0 )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ∅c0 4352 {csn 4648 ‘cfv 6573 0gc0g 17499 LSubSpclss 20952 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-lss 20953 |
This theorem is referenced by: lsmsat 38964 lssatomic 38967 dochsatshpb 41409 hgmapvvlem3 41882 |
Copyright terms: Public domain | W3C validator |