MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lssne0 Structured version   Visualization version   GIF version

Theorem lssne0 20949
Description: A nonzero subspace has a nonzero vector. (shne0i 31467 analog.) (Contributed by NM, 20-Apr-2014.) (Proof shortened by Mario Carneiro, 8-Jan-2015.)
Hypotheses
Ref Expression
lss0cl.z 0 = (0g𝑊)
lss0cl.s 𝑆 = (LSubSp‘𝑊)
Assertion
Ref Expression
lssne0 (𝑋𝑆 → (𝑋 ≠ { 0 } ↔ ∃𝑦𝑋 𝑦0 ))
Distinct variable groups:   𝑦,𝑋   𝑦, 0
Allowed substitution hints:   𝑆(𝑦)   𝑊(𝑦)

Proof of Theorem lssne0
StepHypRef Expression
1 lss0cl.s . . . . 5 𝑆 = (LSubSp‘𝑊)
21lssn0 20938 . . . 4 (𝑋𝑆𝑋 ≠ ∅)
3 eqsn 4829 . . . 4 (𝑋 ≠ ∅ → (𝑋 = { 0 } ↔ ∀𝑦𝑋 𝑦 = 0 ))
42, 3syl 17 . . 3 (𝑋𝑆 → (𝑋 = { 0 } ↔ ∀𝑦𝑋 𝑦 = 0 ))
5 nne 2944 . . . . 5 𝑦0𝑦 = 0 )
65ralbii 3093 . . . 4 (∀𝑦𝑋 ¬ 𝑦0 ↔ ∀𝑦𝑋 𝑦 = 0 )
7 ralnex 3072 . . . 4 (∀𝑦𝑋 ¬ 𝑦0 ↔ ¬ ∃𝑦𝑋 𝑦0 )
86, 7bitr3i 277 . . 3 (∀𝑦𝑋 𝑦 = 0 ↔ ¬ ∃𝑦𝑋 𝑦0 )
94, 8bitr2di 288 . 2 (𝑋𝑆 → (¬ ∃𝑦𝑋 𝑦0𝑋 = { 0 }))
109necon1abid 2979 1 (𝑋𝑆 → (𝑋 ≠ { 0 } ↔ ∃𝑦𝑋 𝑦0 ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  c0 4333  {csn 4626  cfv 6561  0gc0g 17484  LSubSpclss 20929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-iota 6514  df-fun 6563  df-fv 6569  df-ov 7434  df-lss 20930
This theorem is referenced by:  lsmsat  39009  lssatomic  39012  dochsatshpb  41454  hgmapvvlem3  41927
  Copyright terms: Public domain W3C validator