![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssne0 | Structured version Visualization version GIF version |
Description: A nonzero subspace has a nonzero vector. (shne0i 31271 analog.) (Contributed by NM, 20-Apr-2014.) (Proof shortened by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lss0cl.z | ⊢ 0 = (0g‘𝑊) |
lss0cl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lssne0 | ⊢ (𝑋 ∈ 𝑆 → (𝑋 ≠ { 0 } ↔ ∃𝑦 ∈ 𝑋 𝑦 ≠ 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lss0cl.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
2 | 1 | lssn0 20824 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ≠ ∅) |
3 | eqsn 4833 | . . . 4 ⊢ (𝑋 ≠ ∅ → (𝑋 = { 0 } ↔ ∀𝑦 ∈ 𝑋 𝑦 = 0 )) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑋 ∈ 𝑆 → (𝑋 = { 0 } ↔ ∀𝑦 ∈ 𝑋 𝑦 = 0 )) |
5 | nne 2941 | . . . . 5 ⊢ (¬ 𝑦 ≠ 0 ↔ 𝑦 = 0 ) | |
6 | 5 | ralbii 3090 | . . . 4 ⊢ (∀𝑦 ∈ 𝑋 ¬ 𝑦 ≠ 0 ↔ ∀𝑦 ∈ 𝑋 𝑦 = 0 ) |
7 | ralnex 3069 | . . . 4 ⊢ (∀𝑦 ∈ 𝑋 ¬ 𝑦 ≠ 0 ↔ ¬ ∃𝑦 ∈ 𝑋 𝑦 ≠ 0 ) | |
8 | 6, 7 | bitr3i 277 | . . 3 ⊢ (∀𝑦 ∈ 𝑋 𝑦 = 0 ↔ ¬ ∃𝑦 ∈ 𝑋 𝑦 ≠ 0 ) |
9 | 4, 8 | bitr2di 288 | . 2 ⊢ (𝑋 ∈ 𝑆 → (¬ ∃𝑦 ∈ 𝑋 𝑦 ≠ 0 ↔ 𝑋 = { 0 })) |
10 | 9 | necon1abid 2976 | 1 ⊢ (𝑋 ∈ 𝑆 → (𝑋 ≠ { 0 } ↔ ∃𝑦 ∈ 𝑋 𝑦 ≠ 0 )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1534 ∈ wcel 2099 ≠ wne 2937 ∀wral 3058 ∃wrex 3067 ∅c0 4323 {csn 4629 ‘cfv 6548 0gc0g 17421 LSubSpclss 20815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3430 df-v 3473 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6500 df-fun 6550 df-fv 6556 df-ov 7423 df-lss 20816 |
This theorem is referenced by: lsmsat 38480 lssatomic 38483 dochsatshpb 40925 hgmapvvlem3 41398 |
Copyright terms: Public domain | W3C validator |