![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lssne0 | Structured version Visualization version GIF version |
Description: A nonzero subspace has a nonzero vector. (shne0i 31196 analog.) (Contributed by NM, 20-Apr-2014.) (Proof shortened by Mario Carneiro, 8-Jan-2015.) |
Ref | Expression |
---|---|
lss0cl.z | ⊢ 0 = (0g‘𝑊) |
lss0cl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
Ref | Expression |
---|---|
lssne0 | ⊢ (𝑋 ∈ 𝑆 → (𝑋 ≠ { 0 } ↔ ∃𝑦 ∈ 𝑋 𝑦 ≠ 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lss0cl.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
2 | 1 | lssn0 20783 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ≠ ∅) |
3 | eqsn 4825 | . . . 4 ⊢ (𝑋 ≠ ∅ → (𝑋 = { 0 } ↔ ∀𝑦 ∈ 𝑋 𝑦 = 0 )) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑋 ∈ 𝑆 → (𝑋 = { 0 } ↔ ∀𝑦 ∈ 𝑋 𝑦 = 0 )) |
5 | nne 2936 | . . . . 5 ⊢ (¬ 𝑦 ≠ 0 ↔ 𝑦 = 0 ) | |
6 | 5 | ralbii 3085 | . . . 4 ⊢ (∀𝑦 ∈ 𝑋 ¬ 𝑦 ≠ 0 ↔ ∀𝑦 ∈ 𝑋 𝑦 = 0 ) |
7 | ralnex 3064 | . . . 4 ⊢ (∀𝑦 ∈ 𝑋 ¬ 𝑦 ≠ 0 ↔ ¬ ∃𝑦 ∈ 𝑋 𝑦 ≠ 0 ) | |
8 | 6, 7 | bitr3i 277 | . . 3 ⊢ (∀𝑦 ∈ 𝑋 𝑦 = 0 ↔ ¬ ∃𝑦 ∈ 𝑋 𝑦 ≠ 0 ) |
9 | 4, 8 | bitr2di 288 | . 2 ⊢ (𝑋 ∈ 𝑆 → (¬ ∃𝑦 ∈ 𝑋 𝑦 ≠ 0 ↔ 𝑋 = { 0 })) |
10 | 9 | necon1abid 2971 | 1 ⊢ (𝑋 ∈ 𝑆 → (𝑋 ≠ { 0 } ↔ ∃𝑦 ∈ 𝑋 𝑦 ≠ 0 )) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1533 ∈ wcel 2098 ≠ wne 2932 ∀wral 3053 ∃wrex 3062 ∅c0 4315 {csn 4621 ‘cfv 6534 0gc0g 17390 LSubSpclss 20774 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-iota 6486 df-fun 6536 df-fv 6542 df-ov 7405 df-lss 20775 |
This theorem is referenced by: lsmsat 38382 lssatomic 38385 dochsatshpb 40827 hgmapvvlem3 41300 |
Copyright terms: Public domain | W3C validator |