| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lssne0 | Structured version Visualization version GIF version | ||
| Description: A nonzero subspace has a nonzero vector. (shne0i 31384 analog.) (Contributed by NM, 20-Apr-2014.) (Proof shortened by Mario Carneiro, 8-Jan-2015.) |
| Ref | Expression |
|---|---|
| lss0cl.z | ⊢ 0 = (0g‘𝑊) |
| lss0cl.s | ⊢ 𝑆 = (LSubSp‘𝑊) |
| Ref | Expression |
|---|---|
| lssne0 | ⊢ (𝑋 ∈ 𝑆 → (𝑋 ≠ { 0 } ↔ ∃𝑦 ∈ 𝑋 𝑦 ≠ 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lss0cl.s | . . . . 5 ⊢ 𝑆 = (LSubSp‘𝑊) | |
| 2 | 1 | lssn0 20853 | . . . 4 ⊢ (𝑋 ∈ 𝑆 → 𝑋 ≠ ∅) |
| 3 | eqsn 4796 | . . . 4 ⊢ (𝑋 ≠ ∅ → (𝑋 = { 0 } ↔ ∀𝑦 ∈ 𝑋 𝑦 = 0 )) | |
| 4 | 2, 3 | syl 17 | . . 3 ⊢ (𝑋 ∈ 𝑆 → (𝑋 = { 0 } ↔ ∀𝑦 ∈ 𝑋 𝑦 = 0 )) |
| 5 | nne 2930 | . . . . 5 ⊢ (¬ 𝑦 ≠ 0 ↔ 𝑦 = 0 ) | |
| 6 | 5 | ralbii 3076 | . . . 4 ⊢ (∀𝑦 ∈ 𝑋 ¬ 𝑦 ≠ 0 ↔ ∀𝑦 ∈ 𝑋 𝑦 = 0 ) |
| 7 | ralnex 3056 | . . . 4 ⊢ (∀𝑦 ∈ 𝑋 ¬ 𝑦 ≠ 0 ↔ ¬ ∃𝑦 ∈ 𝑋 𝑦 ≠ 0 ) | |
| 8 | 6, 7 | bitr3i 277 | . . 3 ⊢ (∀𝑦 ∈ 𝑋 𝑦 = 0 ↔ ¬ ∃𝑦 ∈ 𝑋 𝑦 ≠ 0 ) |
| 9 | 4, 8 | bitr2di 288 | . 2 ⊢ (𝑋 ∈ 𝑆 → (¬ ∃𝑦 ∈ 𝑋 𝑦 ≠ 0 ↔ 𝑋 = { 0 })) |
| 10 | 9 | necon1abid 2964 | 1 ⊢ (𝑋 ∈ 𝑆 → (𝑋 ≠ { 0 } ↔ ∃𝑦 ∈ 𝑋 𝑦 ≠ 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 ∀wral 3045 ∃wrex 3054 ∅c0 4299 {csn 4592 ‘cfv 6514 0gc0g 17409 LSubSpclss 20844 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-lss 20845 |
| This theorem is referenced by: lsmsat 39008 lssatomic 39011 dochsatshpb 41453 hgmapvvlem3 41926 |
| Copyright terms: Public domain | W3C validator |