MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlttri2 Structured version   Visualization version   GIF version

Theorem xrlttri2 13184
Description: Trichotomy law for 'less than' for extended reals. (Contributed by NM, 10-Dec-2007.)
Assertion
Ref Expression
xrlttri2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))

Proof of Theorem xrlttri2
StepHypRef Expression
1 xrltso 13183 . . . 4 < Or ℝ*
2 sotrieq 5623 . . . 4 (( < Or ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → (𝐴 = 𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
31, 2mpan 690 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
43bicomd 223 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ (𝐴 < 𝐵𝐵 < 𝐴) ↔ 𝐴 = 𝐵))
54necon1abid 2979 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 848   = wceq 1540  wcel 2108  wne 2940   class class class wbr 5143   Or wor 5591  *cxr 11294   < clt 11295
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-pre-lttri 11229  ax-pre-lttrn 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300
This theorem is referenced by:  qextlt  13245  qextle  13246  nmlnogt0  30816  sgncl  34541  sgn3da  34544
  Copyright terms: Public domain W3C validator