MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrlttri2 Structured version   Visualization version   GIF version

Theorem xrlttri2 12887
Description: Trichotomy law for 'less than' for extended reals. (Contributed by NM, 10-Dec-2007.)
Assertion
Ref Expression
xrlttri2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))

Proof of Theorem xrlttri2
StepHypRef Expression
1 xrltso 12886 . . . 4 < Or ℝ*
2 sotrieq 5533 . . . 4 (( < Or ℝ* ∧ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*)) → (𝐴 = 𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
31, 2mpan 687 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 = 𝐵 ↔ ¬ (𝐴 < 𝐵𝐵 < 𝐴)))
43bicomd 222 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ (𝐴 < 𝐵𝐵 < 𝐴) ↔ 𝐴 = 𝐵))
54necon1abid 2984 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ (𝐴 < 𝐵𝐵 < 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1542  wcel 2110  wne 2945   class class class wbr 5079   Or wor 5503  *cxr 11019   < clt 11020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7583  ax-cnex 10938  ax-resscn 10939  ax-pre-lttri 10956  ax-pre-lttrn 10957
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-er 8490  df-en 8726  df-dom 8727  df-sdom 8728  df-pnf 11022  df-mnf 11023  df-xr 11024  df-ltxr 11025
This theorem is referenced by:  qextlt  12948  qextle  12949  nmlnogt0  29168  sgncl  32514  sgn3da  32517
  Copyright terms: Public domain W3C validator