![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xmetgt0 | Structured version Visualization version GIF version |
Description: The distance function of an extended metric space is positive for unequal points. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xmetgt0 | ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ≠ 𝐵 ↔ 0 < (𝐴𝐷𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xmetge0 24237 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 0 ≤ (𝐴𝐷𝐵)) | |
2 | 1 | biantrud 531 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) ≤ 0 ↔ ((𝐴𝐷𝐵) ≤ 0 ∧ 0 ≤ (𝐴𝐷𝐵)))) |
3 | xmetcl 24224 | . . . . 5 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) ∈ ℝ*) | |
4 | 0xr 11283 | . . . . 5 ⊢ 0 ∈ ℝ* | |
5 | xrletri3 13157 | . . . . 5 ⊢ (((𝐴𝐷𝐵) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝐴𝐷𝐵) = 0 ↔ ((𝐴𝐷𝐵) ≤ 0 ∧ 0 ≤ (𝐴𝐷𝐵)))) | |
6 | 3, 4, 5 | sylancl 585 | . . . 4 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ ((𝐴𝐷𝐵) ≤ 0 ∧ 0 ≤ (𝐴𝐷𝐵)))) |
7 | 2, 6 | bitr4d 282 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) ≤ 0 ↔ (𝐴𝐷𝐵) = 0)) |
8 | xrlenlt 11301 | . . . 4 ⊢ (((𝐴𝐷𝐵) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝐴𝐷𝐵) ≤ 0 ↔ ¬ 0 < (𝐴𝐷𝐵))) | |
9 | 3, 4, 8 | sylancl 585 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) ≤ 0 ↔ ¬ 0 < (𝐴𝐷𝐵))) |
10 | xmeteq0 24231 | . . 3 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐴𝐷𝐵) = 0 ↔ 𝐴 = 𝐵)) | |
11 | 7, 9, 10 | 3bitr3d 309 | . 2 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (¬ 0 < (𝐴𝐷𝐵) ↔ 𝐴 = 𝐵)) |
12 | 11 | necon1abid 2974 | 1 ⊢ ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ≠ 𝐵 ↔ 0 < (𝐴𝐷𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ≠ wne 2935 class class class wbr 5142 ‘cfv 6542 (class class class)co 7414 0cc0 11130 ℝ*cxr 11269 < clt 11270 ≤ cle 11271 ∞Metcxmet 21251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-1st 7987 df-2nd 7988 df-er 8718 df-map 8838 df-en 8956 df-dom 8957 df-sdom 8958 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-div 11894 df-2 12297 df-rp 12999 df-xneg 13116 df-xadd 13117 df-xmul 13118 df-xmet 21259 |
This theorem is referenced by: metgt0 24252 |
Copyright terms: Public domain | W3C validator |