![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3bbid | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.) |
Ref | Expression |
---|---|
necon3bbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon3bbid | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) | |
2 | 1 | bicomd 223 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
3 | 2 | necon3abid 2974 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1536 ≠ wne 2937 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2938 |
This theorem is referenced by: necon1abid 2976 necon3bid 2982 eldifsn 4790 php 9244 phpOLD 9256 xmullem2 13303 fzdif1 13641 seqcoll2 14500 cnpart 15275 rlimrecl 15612 ncoprmgcdne1b 16683 prmrp 16745 4sqlem17 16994 mrieqvd 17682 mrieqv2d 17683 pltval 18389 latnlemlt 18529 latnle 18530 odnncl 19577 gexnnod 19620 sylow1lem1 19630 slwpss 19644 lssnle 19706 nzrunit 20540 imadrhmcl 20814 lspsnne1 21136 cnsubrg 21462 psrridm 22000 mhpmulcl 22170 cmpfi 23431 hausdiag 23668 txhaus 23670 isusp 24285 recld2 24849 metdseq0 24889 i1f1lem 25737 aaliou2b 26397 dvloglem 26704 logf1o2 26706 lgsne0 27393 lgsqr 27409 2sqlem7 27482 ostth3 27696 tglngne 28572 tgelrnln 28652 eucrct2eupth 30273 norm1exi 31278 atnemeq0 32405 opeldifid 32618 unitnz 33228 isdrng4 33278 pridln1 33450 mxidln1 33473 ssmxidllem 33480 rprmnz 33527 ply1unit 33579 ply1dg3rt0irred 33586 constrrtll 33736 qtophaus 33796 ordtconnlem1 33884 elzrhunit 33939 sgnneg 34521 subfacp1lem6 35169 maxidln1 38030 smprngopr 38038 lsatnem0 39026 atncmp 39293 atncvrN 39296 cdlema2N 39774 lhpmatb 40013 lhpat3 40028 cdleme3 40219 cdleme7 40231 cdlemg27b 40678 dvh2dimatN 41422 dvh2dim 41427 dochexmidlem1 41442 dochfln0 41459 dvrelog2b 42047 aks6d1c2p2 42100 hashscontpow 42103 rspcsbnea 42112 nna4b4nsq 42646 |
Copyright terms: Public domain | W3C validator |