| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bbid | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.) |
| Ref | Expression |
|---|---|
| necon3bbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| necon3bbid | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) | |
| 2 | 1 | bicomd 223 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
| 3 | 2 | necon3abid 2962 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: necon1abid 2964 necon3bid 2970 eldifsn 4736 php 9111 xmullem2 13156 fzdif1 13497 seqcoll2 14364 cnpart 15139 rlimrecl 15479 ncoprmgcdne1b 16553 prmrp 16615 4sqlem17 16865 mrieqvd 17536 mrieqv2d 17537 pltval 18228 latnlemlt 18370 latnle 18371 odnncl 19450 gexnnod 19493 sylow1lem1 19503 slwpss 19517 lssnle 19579 nzrunit 20432 imadrhmcl 20705 lspsnne1 21047 cnsubrg 21357 psrridm 21893 mhpmulcl 22057 cmpfi 23316 hausdiag 23553 txhaus 23555 isusp 24169 recld2 24723 metdseq0 24763 i1f1lem 25610 aaliou2b 26269 dvloglem 26577 logf1o2 26579 lgsne0 27266 lgsqr 27282 2sqlem7 27355 ostth3 27569 tglngne 28521 tgelrnln 28601 eucrct2eupth 30215 norm1exi 31220 atnemeq0 32347 opeldifid 32569 arginv 32721 sgnneg 32806 unitnz 33196 isdrng4 33251 pridln1 33398 mxidln1 33421 ssmxidllem 33428 rprmnz 33475 ply1unit 33528 ply1dg3rt0irred 33536 constrrtll 33734 qtophaus 33839 ordtconnlem1 33927 elzrhunit 33980 subfacp1lem6 35197 maxidln1 38063 smprngopr 38071 lsatnem0 39063 atncmp 39330 atncvrN 39333 cdlema2N 39810 lhpmatb 40049 lhpat3 40064 cdleme3 40255 cdleme7 40267 cdlemg27b 40714 dvh2dimatN 41458 dvh2dim 41463 dochexmidlem1 41478 dochfln0 41495 dvrelog2b 42078 aks6d1c2p2 42131 hashscontpow 42134 rspcsbnea 42143 nna4b4nsq 42672 |
| Copyright terms: Public domain | W3C validator |