Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3bbid | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.) |
Ref | Expression |
---|---|
necon3bbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon3bbid | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) | |
2 | 1 | bicomd 222 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
3 | 2 | necon3abid 2980 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
4 | 3 | bicomd 222 | 1 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ≠ wne 2943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2944 |
This theorem is referenced by: necon1abid 2982 necon3bid 2988 eldifsn 4720 php 8993 phpOLD 9005 xmullem2 12999 seqcoll2 14179 cnpart 14951 rlimrecl 15289 ncoprmgcdne1b 16355 prmrp 16417 4sqlem17 16662 mrieqvd 17347 mrieqv2d 17348 pltval 18050 latnlemlt 18190 latnle 18191 odnncl 19153 gexnnod 19193 sylow1lem1 19203 slwpss 19217 lssnle 19280 lspsnne1 20379 nzrunit 20538 cnsubrg 20658 psrridm 21173 mhpmulcl 21339 cmpfi 22559 hausdiag 22796 txhaus 22798 isusp 23413 recld2 23977 metdseq0 24017 i1f1lem 24853 aaliou2b 25501 dvloglem 25803 logf1o2 25805 lgsne0 26483 lgsqr 26499 2sqlem7 26572 ostth3 26786 tglngne 26911 tgelrnln 26991 eucrct2eupth 28609 norm1exi 29612 atnemeq0 30739 opeldifid 30938 pridln1 31618 mxidln1 31638 ssmxidllem 31641 qtophaus 31786 ordtconnlem1 31874 elzrhunit 31929 sgnneg 32507 subfacp1lem6 33147 maxidln1 36202 smprngopr 36210 lsatnem0 37059 atncmp 37326 atncvrN 37329 cdlema2N 37806 lhpmatb 38045 lhpat3 38060 cdleme3 38251 cdleme7 38263 cdlemg27b 38710 dvh2dimatN 39454 dvh2dim 39459 dochexmidlem1 39474 dochfln0 39491 dvrelog2b 40074 nna4b4nsq 40497 |
Copyright terms: Public domain | W3C validator |