| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bbid | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.) |
| Ref | Expression |
|---|---|
| necon3bbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| necon3bbid | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) | |
| 2 | 1 | bicomd 223 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
| 3 | 2 | necon3abid 2977 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2940 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2941 |
| This theorem is referenced by: necon1abid 2979 necon3bid 2985 eldifsn 4786 php 9247 phpOLD 9259 xmullem2 13307 fzdif1 13645 seqcoll2 14504 cnpart 15279 rlimrecl 15616 ncoprmgcdne1b 16687 prmrp 16749 4sqlem17 16999 mrieqvd 17681 mrieqv2d 17682 pltval 18377 latnlemlt 18517 latnle 18518 odnncl 19563 gexnnod 19606 sylow1lem1 19616 slwpss 19630 lssnle 19692 nzrunit 20524 imadrhmcl 20798 lspsnne1 21119 cnsubrg 21445 psrridm 21983 mhpmulcl 22153 cmpfi 23416 hausdiag 23653 txhaus 23655 isusp 24270 recld2 24836 metdseq0 24876 i1f1lem 25724 aaliou2b 26383 dvloglem 26690 logf1o2 26692 lgsne0 27379 lgsqr 27395 2sqlem7 27468 ostth3 27682 tglngne 28558 tgelrnln 28638 eucrct2eupth 30264 norm1exi 31269 atnemeq0 32396 opeldifid 32612 unitnz 33243 isdrng4 33298 pridln1 33471 mxidln1 33494 ssmxidllem 33501 rprmnz 33548 ply1unit 33600 ply1dg3rt0irred 33607 constrrtll 33772 qtophaus 33835 ordtconnlem1 33923 elzrhunit 33978 sgnneg 34543 subfacp1lem6 35190 maxidln1 38051 smprngopr 38059 lsatnem0 39046 atncmp 39313 atncvrN 39316 cdlema2N 39794 lhpmatb 40033 lhpat3 40048 cdleme3 40239 cdleme7 40251 cdlemg27b 40698 dvh2dimatN 41442 dvh2dim 41447 dochexmidlem1 41462 dochfln0 41479 dvrelog2b 42067 aks6d1c2p2 42120 hashscontpow 42123 rspcsbnea 42132 nna4b4nsq 42670 |
| Copyright terms: Public domain | W3C validator |