| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bbid | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.) |
| Ref | Expression |
|---|---|
| necon3bbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| necon3bbid | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) | |
| 2 | 1 | bicomd 223 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
| 3 | 2 | necon3abid 2962 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2926 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2927 |
| This theorem is referenced by: necon1abid 2964 necon3bid 2970 eldifsn 4753 php 9177 xmullem2 13232 fzdif1 13573 seqcoll2 14437 cnpart 15213 rlimrecl 15553 ncoprmgcdne1b 16627 prmrp 16689 4sqlem17 16939 mrieqvd 17606 mrieqv2d 17607 pltval 18298 latnlemlt 18438 latnle 18439 odnncl 19482 gexnnod 19525 sylow1lem1 19535 slwpss 19549 lssnle 19611 nzrunit 20440 imadrhmcl 20713 lspsnne1 21034 cnsubrg 21351 psrridm 21879 mhpmulcl 22043 cmpfi 23302 hausdiag 23539 txhaus 23541 isusp 24156 recld2 24710 metdseq0 24750 i1f1lem 25597 aaliou2b 26256 dvloglem 26564 logf1o2 26566 lgsne0 27253 lgsqr 27269 2sqlem7 27342 ostth3 27556 tglngne 28484 tgelrnln 28564 eucrct2eupth 30181 norm1exi 31186 atnemeq0 32313 opeldifid 32535 arginv 32678 sgnneg 32765 unitnz 33197 isdrng4 33252 pridln1 33421 mxidln1 33444 ssmxidllem 33451 rprmnz 33498 ply1unit 33551 ply1dg3rt0irred 33558 constrrtll 33728 qtophaus 33833 ordtconnlem1 33921 elzrhunit 33974 subfacp1lem6 35179 maxidln1 38045 smprngopr 38053 lsatnem0 39045 atncmp 39312 atncvrN 39315 cdlema2N 39793 lhpmatb 40032 lhpat3 40047 cdleme3 40238 cdleme7 40250 cdlemg27b 40697 dvh2dimatN 41441 dvh2dim 41446 dochexmidlem1 41461 dochfln0 41478 dvrelog2b 42061 aks6d1c2p2 42114 hashscontpow 42117 rspcsbnea 42126 nna4b4nsq 42655 |
| Copyright terms: Public domain | W3C validator |