| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bbid | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.) |
| Ref | Expression |
|---|---|
| necon3bbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| necon3bbid | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) | |
| 2 | 1 | bicomd 223 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
| 3 | 2 | necon3abid 2961 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon1abid 2963 necon3bid 2969 eldifsn 4740 php 9131 xmullem2 13185 fzdif1 13526 seqcoll2 14390 cnpart 15165 rlimrecl 15505 ncoprmgcdne1b 16579 prmrp 16641 4sqlem17 16891 mrieqvd 17562 mrieqv2d 17563 pltval 18254 latnlemlt 18396 latnle 18397 odnncl 19442 gexnnod 19485 sylow1lem1 19495 slwpss 19509 lssnle 19571 nzrunit 20427 imadrhmcl 20700 lspsnne1 21042 cnsubrg 21352 psrridm 21888 mhpmulcl 22052 cmpfi 23311 hausdiag 23548 txhaus 23550 isusp 24165 recld2 24719 metdseq0 24759 i1f1lem 25606 aaliou2b 26265 dvloglem 26573 logf1o2 26575 lgsne0 27262 lgsqr 27278 2sqlem7 27351 ostth3 27565 tglngne 28513 tgelrnln 28593 eucrct2eupth 30207 norm1exi 31212 atnemeq0 32339 opeldifid 32561 arginv 32704 sgnneg 32791 unitnz 33189 isdrng4 33244 pridln1 33390 mxidln1 33413 ssmxidllem 33420 rprmnz 33467 ply1unit 33520 ply1dg3rt0irred 33527 constrrtll 33697 qtophaus 33802 ordtconnlem1 33890 elzrhunit 33943 subfacp1lem6 35157 maxidln1 38023 smprngopr 38031 lsatnem0 39023 atncmp 39290 atncvrN 39293 cdlema2N 39771 lhpmatb 40010 lhpat3 40025 cdleme3 40216 cdleme7 40228 cdlemg27b 40675 dvh2dimatN 41419 dvh2dim 41424 dochexmidlem1 41439 dochfln0 41456 dvrelog2b 42039 aks6d1c2p2 42092 hashscontpow 42095 rspcsbnea 42104 nna4b4nsq 42633 |
| Copyright terms: Public domain | W3C validator |