![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon3bbid | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.) |
Ref | Expression |
---|---|
necon3bbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon3bbid | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) | |
2 | 1 | bicomd 223 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
3 | 2 | necon3abid 2983 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1537 ≠ wne 2946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-ne 2947 |
This theorem is referenced by: necon1abid 2985 necon3bid 2991 eldifsn 4811 php 9273 phpOLD 9285 xmullem2 13327 seqcoll2 14514 cnpart 15289 rlimrecl 15626 ncoprmgcdne1b 16697 prmrp 16759 4sqlem17 17008 mrieqvd 17696 mrieqv2d 17697 pltval 18402 latnlemlt 18542 latnle 18543 odnncl 19587 gexnnod 19630 sylow1lem1 19640 slwpss 19654 lssnle 19716 nzrunit 20550 imadrhmcl 20820 lspsnne1 21142 cnsubrg 21468 psrridm 22006 mhpmulcl 22176 cmpfi 23437 hausdiag 23674 txhaus 23676 isusp 24291 recld2 24855 metdseq0 24895 i1f1lem 25743 aaliou2b 26401 dvloglem 26708 logf1o2 26710 lgsne0 27397 lgsqr 27413 2sqlem7 27486 ostth3 27700 tglngne 28576 tgelrnln 28656 eucrct2eupth 30277 norm1exi 31282 atnemeq0 32409 opeldifid 32621 unitnz 33219 isdrng4 33264 pridln1 33436 mxidln1 33459 ssmxidllem 33466 rprmnz 33513 ply1unit 33565 ply1dg3rt0irred 33572 constrrtll 33722 qtophaus 33782 ordtconnlem1 33870 elzrhunit 33925 sgnneg 34505 subfacp1lem6 35153 maxidln1 38004 smprngopr 38012 lsatnem0 39001 atncmp 39268 atncvrN 39271 cdlema2N 39749 lhpmatb 39988 lhpat3 40003 cdleme3 40194 cdleme7 40206 cdlemg27b 40653 dvh2dimatN 41397 dvh2dim 41402 dochexmidlem1 41417 dochfln0 41434 dvrelog2b 42023 aks6d1c2p2 42076 hashscontpow 42079 rspcsbnea 42088 nna4b4nsq 42615 |
Copyright terms: Public domain | W3C validator |