Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > necon3bbid | Structured version Visualization version GIF version |
Description: Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.) |
Ref | Expression |
---|---|
necon3bbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) |
Ref | Expression |
---|---|
necon3bbid | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon3bbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) | |
2 | 1 | bicomd 222 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
3 | 2 | necon3abid 2979 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
4 | 3 | bicomd 222 | 1 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ≠ wne 2942 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-ne 2943 |
This theorem is referenced by: necon1abid 2981 necon3bid 2987 eldifsn 4717 php 8897 xmullem2 12928 seqcoll2 14107 cnpart 14879 rlimrecl 15217 ncoprmgcdne1b 16283 prmrp 16345 4sqlem17 16590 mrieqvd 17264 mrieqv2d 17265 pltval 17965 latnlemlt 18105 latnle 18106 odnncl 19068 gexnnod 19108 sylow1lem1 19118 slwpss 19132 lssnle 19195 lspsnne1 20294 nzrunit 20451 cnsubrg 20570 psrridm 21083 mhpmulcl 21249 cmpfi 22467 hausdiag 22704 txhaus 22706 isusp 23321 recld2 23883 metdseq0 23923 i1f1lem 24758 aaliou2b 25406 dvloglem 25708 logf1o2 25710 lgsne0 26388 lgsqr 26404 2sqlem7 26477 ostth3 26691 tglngne 26815 tgelrnln 26895 eucrct2eupth 28510 norm1exi 29513 atnemeq0 30640 opeldifid 30839 pridln1 31520 mxidln1 31540 ssmxidllem 31543 qtophaus 31688 ordtconnlem1 31776 elzrhunit 31829 sgnneg 32407 subfacp1lem6 33047 maxidln1 36129 smprngopr 36137 lsatnem0 36986 atncmp 37253 atncvrN 37256 cdlema2N 37733 lhpmatb 37972 lhpat3 37987 cdleme3 38178 cdleme7 38190 cdlemg27b 38637 dvh2dimatN 39381 dvh2dim 39386 dochexmidlem1 39401 dochfln0 39418 dvrelog2b 40002 nna4b4nsq 40413 |
Copyright terms: Public domain | W3C validator |