| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bbid | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.) |
| Ref | Expression |
|---|---|
| necon3bbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| necon3bbid | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) | |
| 2 | 1 | bicomd 223 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
| 3 | 2 | necon3abid 2968 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2932 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2933 |
| This theorem is referenced by: necon1abid 2970 necon3bid 2976 eldifsn 4762 php 9221 phpOLD 9231 xmullem2 13281 fzdif1 13622 seqcoll2 14483 cnpart 15259 rlimrecl 15596 ncoprmgcdne1b 16669 prmrp 16731 4sqlem17 16981 mrieqvd 17650 mrieqv2d 17651 pltval 18342 latnlemlt 18482 latnle 18483 odnncl 19526 gexnnod 19569 sylow1lem1 19579 slwpss 19593 lssnle 19655 nzrunit 20484 imadrhmcl 20757 lspsnne1 21078 cnsubrg 21395 psrridm 21923 mhpmulcl 22087 cmpfi 23346 hausdiag 23583 txhaus 23585 isusp 24200 recld2 24754 metdseq0 24794 i1f1lem 25642 aaliou2b 26301 dvloglem 26609 logf1o2 26611 lgsne0 27298 lgsqr 27314 2sqlem7 27387 ostth3 27601 tglngne 28529 tgelrnln 28609 eucrct2eupth 30226 norm1exi 31231 atnemeq0 32358 opeldifid 32580 arginv 32725 sgnneg 32812 unitnz 33234 isdrng4 33289 pridln1 33458 mxidln1 33481 ssmxidllem 33488 rprmnz 33535 ply1unit 33588 ply1dg3rt0irred 33595 constrrtll 33765 qtophaus 33867 ordtconnlem1 33955 elzrhunit 34008 subfacp1lem6 35207 maxidln1 38068 smprngopr 38076 lsatnem0 39063 atncmp 39330 atncvrN 39333 cdlema2N 39811 lhpmatb 40050 lhpat3 40065 cdleme3 40256 cdleme7 40268 cdlemg27b 40715 dvh2dimatN 41459 dvh2dim 41464 dochexmidlem1 41479 dochfln0 41496 dvrelog2b 42079 aks6d1c2p2 42132 hashscontpow 42135 rspcsbnea 42144 nna4b4nsq 42683 |
| Copyright terms: Public domain | W3C validator |