| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bbid | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.) |
| Ref | Expression |
|---|---|
| necon3bbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| necon3bbid | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) | |
| 2 | 1 | bicomd 223 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
| 3 | 2 | necon3abid 2961 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ≠ wne 2925 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2926 |
| This theorem is referenced by: necon1abid 2963 necon3bid 2969 eldifsn 4750 php 9171 xmullem2 13225 fzdif1 13566 seqcoll2 14430 cnpart 15206 rlimrecl 15546 ncoprmgcdne1b 16620 prmrp 16682 4sqlem17 16932 mrieqvd 17599 mrieqv2d 17600 pltval 18291 latnlemlt 18431 latnle 18432 odnncl 19475 gexnnod 19518 sylow1lem1 19528 slwpss 19542 lssnle 19604 nzrunit 20433 imadrhmcl 20706 lspsnne1 21027 cnsubrg 21344 psrridm 21872 mhpmulcl 22036 cmpfi 23295 hausdiag 23532 txhaus 23534 isusp 24149 recld2 24703 metdseq0 24743 i1f1lem 25590 aaliou2b 26249 dvloglem 26557 logf1o2 26559 lgsne0 27246 lgsqr 27262 2sqlem7 27335 ostth3 27549 tglngne 28477 tgelrnln 28557 eucrct2eupth 30174 norm1exi 31179 atnemeq0 32306 opeldifid 32528 arginv 32671 sgnneg 32758 unitnz 33190 isdrng4 33245 pridln1 33414 mxidln1 33437 ssmxidllem 33444 rprmnz 33491 ply1unit 33544 ply1dg3rt0irred 33551 constrrtll 33721 qtophaus 33826 ordtconnlem1 33914 elzrhunit 33967 subfacp1lem6 35172 maxidln1 38038 smprngopr 38046 lsatnem0 39038 atncmp 39305 atncvrN 39308 cdlema2N 39786 lhpmatb 40025 lhpat3 40040 cdleme3 40231 cdleme7 40243 cdlemg27b 40690 dvh2dimatN 41434 dvh2dim 41439 dochexmidlem1 41454 dochfln0 41471 dvrelog2b 42054 aks6d1c2p2 42107 hashscontpow 42110 rspcsbnea 42119 nna4b4nsq 42648 |
| Copyright terms: Public domain | W3C validator |