| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon3bbid | Structured version Visualization version GIF version | ||
| Description: Deduction from equality to inequality. (Contributed by NM, 2-Jun-2007.) |
| Ref | Expression |
|---|---|
| necon3bbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) |
| Ref | Expression |
|---|---|
| necon3bbid | ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon3bbid.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝐴 = 𝐵)) | |
| 2 | 1 | bicomd 223 | . . 3 ⊢ (𝜑 → (𝐴 = 𝐵 ↔ 𝜓)) |
| 3 | 2 | necon3abid 2966 | . 2 ⊢ (𝜑 → (𝐴 ≠ 𝐵 ↔ ¬ 𝜓)) |
| 4 | 3 | bicomd 223 | 1 ⊢ (𝜑 → (¬ 𝜓 ↔ 𝐴 ≠ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1541 ≠ wne 2930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-ne 2931 |
| This theorem is referenced by: necon1abid 2968 necon3bid 2974 eldifsn 4739 php 9126 xmullem2 13174 fzdif1 13515 seqcoll2 14382 cnpart 15157 rlimrecl 15497 ncoprmgcdne1b 16571 prmrp 16633 4sqlem17 16883 mrieqvd 17554 mrieqv2d 17555 pltval 18246 latnlemlt 18388 latnle 18389 odnncl 19467 gexnnod 19510 sylow1lem1 19520 slwpss 19534 lssnle 19596 nzrunit 20449 imadrhmcl 20722 lspsnne1 21064 cnsubrg 21374 psrridm 21910 mhpmulcl 22074 cmpfi 23333 hausdiag 23570 txhaus 23572 isusp 24186 recld2 24740 metdseq0 24780 i1f1lem 25627 aaliou2b 26286 dvloglem 26594 logf1o2 26596 lgsne0 27283 lgsqr 27299 2sqlem7 27372 ostth3 27586 tglngne 28538 tgelrnln 28618 eucrct2eupth 30236 norm1exi 31241 atnemeq0 32368 opeldifid 32590 arginv 32742 sgnneg 32827 unitnz 33217 isdrng4 33272 pridln1 33419 mxidln1 33442 ssmxidllem 33449 rprmnz 33496 ply1unit 33549 ply1dg3rt0irred 33557 constrrtll 33755 qtophaus 33860 ordtconnlem1 33948 elzrhunit 34001 subfacp1lem6 35240 maxidln1 38094 smprngopr 38102 lsatnem0 39154 atncmp 39421 atncvrN 39424 cdlema2N 39901 lhpmatb 40140 lhpat3 40155 cdleme3 40346 cdleme7 40358 cdlemg27b 40805 dvh2dimatN 41549 dvh2dim 41554 dochexmidlem1 41569 dochfln0 41586 dvrelog2b 42169 aks6d1c2p2 42222 hashscontpow 42225 rspcsbnea 42234 nna4b4nsq 42768 |
| Copyright terms: Public domain | W3C validator |