Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nel1nelin Structured version   Visualization version   GIF version

Theorem nel1nelin 39857
Description: Membership in an intersection implies membership in the first set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
nel1nelin 𝐴𝐵 → ¬ 𝐴 ∈ (𝐵𝐶))

Proof of Theorem nel1nelin
StepHypRef Expression
1 elinel1 3950 . 2 (𝐴 ∈ (𝐵𝐶) → 𝐴𝐵)
21con3i 151 1 𝐴𝐵 → ¬ 𝐴 ∈ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2145  cin 3722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-v 3353  df-in 3730
This theorem is referenced by:  nel1nelini  39860
  Copyright terms: Public domain W3C validator