Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nel1nelin | Structured version Visualization version GIF version |
Description: Membership in an intersection implies membership in the first set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
nel1nelin | ⊢ (¬ 𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel1 4139 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ 𝐵) | |
2 | 1 | con3i 154 | 1 ⊢ (¬ 𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2105 ∩ cin 3895 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-in 3903 |
This theorem is referenced by: nel1nelini 42926 |
Copyright terms: Public domain | W3C validator |