MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nel1nelin Structured version   Visualization version   GIF version

Theorem nel1nelin 4178
Description: Membership in an intersection implies membership in the first set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
nel1nelin 𝐴𝐵 → ¬ 𝐴 ∈ (𝐵𝐶))

Proof of Theorem nel1nelin
StepHypRef Expression
1 elinel1 4172 . 2 (𝐴 ∈ (𝐵𝐶) → 𝐴𝐵)
21con3i 154 1 𝐴𝐵 → ¬ 𝐴 ∈ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2109  cin 3921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3457  df-in 3929
This theorem is referenced by:  nel1nelini  45111
  Copyright terms: Public domain W3C validator