Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  resabs1i Structured version   Visualization version   GIF version

Theorem resabs1i 40260
Description: Absorption law for restriction. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
resabs1i.1 𝐵𝐶
Assertion
Ref Expression
resabs1i ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵)

Proof of Theorem resabs1i
StepHypRef Expression
1 resabs1i.1 . 2 𝐵𝐶
2 resabs1 5676 . 2 (𝐵𝐶 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))
31, 2ax-mp 5 1 ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1601  wss 3792  cres 5357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-rab 3099  df-v 3400  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-opab 4949  df-xp 5361  df-rel 5362  df-res 5367
This theorem is referenced by:  liminfresre  40919
  Copyright terms: Public domain W3C validator