MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resabs1i Structured version   Visualization version   GIF version

Theorem resabs1i 5963
Description: Absorption law for restriction. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypothesis
Ref Expression
resabs1i.1 𝐵𝐶
Assertion
Ref Expression
resabs1i ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵)

Proof of Theorem resabs1i
StepHypRef Expression
1 resabs1i.1 . 2 𝐵𝐶
2 resabs1 5962 . 2 (𝐵𝐶 → ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵))
31, 2ax-mp 5 1 ((𝐴𝐶) ↾ 𝐵) = (𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wss 3898  cres 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-opab 5158  df-xp 5627  df-rel 5628  df-res 5633
This theorem is referenced by:  resf1extb  7873  liminfresre  45939
  Copyright terms: Public domain W3C validator