| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nel2nelin | Structured version Visualization version GIF version | ||
| Description: Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| nel2nelin | ⊢ (¬ 𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ (𝐵 ∩ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel2 4182 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ 𝐶) | |
| 2 | 1 | con3i 154 | 1 ⊢ (¬ 𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ (𝐵 ∩ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2107 ∩ cin 3930 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-in 3938 |
| This theorem is referenced by: nel2nelini 45084 tposres 48717 |
| Copyright terms: Public domain | W3C validator |