Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nel2nelin Structured version   Visualization version   GIF version

Theorem nel2nelin 45049
Description: Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
nel2nelin 𝐴𝐶 → ¬ 𝐴 ∈ (𝐵𝐶))

Proof of Theorem nel2nelin
StepHypRef Expression
1 elinel2 4225 . 2 (𝐴 ∈ (𝐵𝐶) → 𝐴𝐶)
21con3i 154 1 𝐴𝐶 → ¬ 𝐴 ∈ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2108  cin 3975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-in 3983
This theorem is referenced by:  nel2nelini  45051
  Copyright terms: Public domain W3C validator