Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nel2nelin Structured version   Visualization version   GIF version

Theorem nel2nelin 42369
Description: Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Assertion
Ref Expression
nel2nelin 𝐴𝐶 → ¬ 𝐴 ∈ (𝐵𝐶))

Proof of Theorem nel2nelin
StepHypRef Expression
1 elinel2 4110 . 2 (𝐴 ∈ (𝐵𝐶) → 𝐴𝐶)
21con3i 157 1 𝐴𝐶 → ¬ 𝐴 ∈ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wcel 2110  cin 3865
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-ext 2708
This theorem depends on definitions:  df-bi 210  df-an 400  df-tru 1546  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3410  df-in 3873
This theorem is referenced by:  nel2nelini  42371
  Copyright terms: Public domain W3C validator