Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nel2nelin | Structured version Visualization version GIF version |
Description: Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
Ref | Expression |
---|---|
nel2nelin | ⊢ (¬ 𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ (𝐵 ∩ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elinel2 4130 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) → 𝐴 ∈ 𝐶) | |
2 | 1 | con3i 154 | 1 ⊢ (¬ 𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ (𝐵 ∩ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∈ wcel 2106 ∩ cin 3886 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 |
This theorem is referenced by: nel2nelini 42698 |
Copyright terms: Public domain | W3C validator |