| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nel2nelini | Structured version Visualization version GIF version | ||
| Description: Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| nel2nelini.1 | ⊢ ¬ 𝐴 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| nel2nelini | ⊢ ¬ 𝐴 ∈ (𝐵 ∩ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nel2nelini.1 | . 2 ⊢ ¬ 𝐴 ∈ 𝐶 | |
| 2 | nel2nelin 4155 | . 2 ⊢ (¬ 𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ (𝐵 ∩ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ¬ 𝐴 ∈ (𝐵 ∩ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2111 ∩ cin 3896 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3904 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |