| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nel2nelini | Structured version Visualization version GIF version | ||
| Description: Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
| Ref | Expression |
|---|---|
| nel2nelini.1 | ⊢ ¬ 𝐴 ∈ 𝐶 |
| Ref | Expression |
|---|---|
| nel2nelini | ⊢ ¬ 𝐴 ∈ (𝐵 ∩ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nel2nelini.1 | . 2 ⊢ ¬ 𝐴 ∈ 𝐶 | |
| 2 | nel2nelin 4171 | . 2 ⊢ (¬ 𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ (𝐵 ∩ 𝐶)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ¬ 𝐴 ∈ (𝐵 ∩ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2109 ∩ cin 3913 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-in 3921 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |