![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliunid | Structured version Visualization version GIF version |
Description: Membership in indexed union. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
Ref | Expression |
---|---|
eliunid | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspe 3240 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) | |
2 | eliun 4994 | . 2 ⊢ (𝐶 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝐶 ∈ 𝐵) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 ∃wrex 3064 ∪ ciun 4990 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-12 2163 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-rex 3065 df-v 3470 df-iun 4992 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |