Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliunid Structured version   Visualization version   GIF version

Theorem eliunid 45148
Description: Membership in indexed union. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Assertion
Ref Expression
eliunid ((𝑥𝐴𝐶𝐵) → 𝐶 𝑥𝐴 𝐵)
Distinct variable group:   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem eliunid
StepHypRef Expression
1 rspe 3228 . 2 ((𝑥𝐴𝐶𝐵) → ∃𝑥𝐴 𝐶𝐵)
2 eliun 4962 . 2 (𝐶 𝑥𝐴 𝐵 ↔ ∃𝑥𝐴 𝐶𝐵)
31, 2sylibr 234 1 ((𝑥𝐴𝐶𝐵) → 𝐶 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wrex 3054   ciun 4958
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rex 3055  df-v 3452  df-iun 4960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator