MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimdd Structured version   Visualization version   GIF version

Theorem exlimdd 2216
Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 3-Sep-2023.)
Hypotheses
Ref Expression
exlimdd.1 𝑥𝜑
exlimdd.2 𝑥𝜒
exlimdd.3 (𝜑 → ∃𝑥𝜓)
exlimdd.4 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
exlimdd (𝜑𝜒)

Proof of Theorem exlimdd
StepHypRef Expression
1 exlimdd.1 . 2 𝑥𝜑
2 exlimdd.2 . 2 𝑥𝜒
3 exlimdd.3 . 2 (𝜑 → ∃𝑥𝜓)
4 exlimdd.4 . . 3 ((𝜑𝜓) → 𝜒)
54ex 412 . 2 (𝜑 → (𝜓𝜒))
61, 2, 3, 5exlimimdd 2215 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wex 1785  wnf 1789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-12 2174
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1786  df-nf 1790
This theorem is referenced by:  fvmptd3f  6884  ovmpodf  7420  ex-natded9.26  28762  stoweidlem43  43538  stoweidlem44  43539  stoweidlem54  43549
  Copyright terms: Public domain W3C validator