| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > exlimdd | Structured version Visualization version GIF version | ||
| Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 3-Sep-2023.) |
| Ref | Expression |
|---|---|
| exlimdd.1 | ⊢ Ⅎ𝑥𝜑 |
| exlimdd.2 | ⊢ Ⅎ𝑥𝜒 |
| exlimdd.3 | ⊢ (𝜑 → ∃𝑥𝜓) |
| exlimdd.4 | ⊢ ((𝜑 ∧ 𝜓) → 𝜒) |
| Ref | Expression |
|---|---|
| exlimdd | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimdd.1 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | exlimdd.2 | . 2 ⊢ Ⅎ𝑥𝜒 | |
| 3 | exlimdd.3 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 4 | exlimdd.4 | . . 3 ⊢ ((𝜑 ∧ 𝜓) → 𝜒) | |
| 5 | 4 | ex 412 | . 2 ⊢ (𝜑 → (𝜓 → 𝜒)) |
| 6 | 1, 2, 3, 5 | exlimimdd 2220 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1779 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: fvmptd3f 7006 ovmpodf 7568 ex-natded9.26 30405 stoweidlem43 46039 stoweidlem44 46040 stoweidlem54 46050 |
| Copyright terms: Public domain | W3C validator |