MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exlimdd Structured version   Visualization version   GIF version

Theorem exlimdd 2214
Description: Existential elimination rule of natural deduction. (Contributed by Mario Carneiro, 9-Feb-2017.) (Proof shortened by Wolf Lammen, 3-Sep-2023.)
Hypotheses
Ref Expression
exlimdd.1 𝑥𝜑
exlimdd.2 𝑥𝜒
exlimdd.3 (𝜑 → ∃𝑥𝜓)
exlimdd.4 ((𝜑𝜓) → 𝜒)
Assertion
Ref Expression
exlimdd (𝜑𝜒)

Proof of Theorem exlimdd
StepHypRef Expression
1 exlimdd.1 . 2 𝑥𝜑
2 exlimdd.2 . 2 𝑥𝜒
3 exlimdd.3 . 2 (𝜑 → ∃𝑥𝜓)
4 exlimdd.4 . . 3 ((𝜑𝜓) → 𝜒)
54ex 414 . 2 (𝜑 → (𝜓𝜒))
61, 2, 3, 5exlimimdd 2213 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wex 1782  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2172
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-nf 1787
This theorem is referenced by:  fvmptd3f  7014  ovmpodf  7564  ex-natded9.26  29672  stoweidlem43  44759  stoweidlem44  44760  stoweidlem54  44770
  Copyright terms: Public domain W3C validator