MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  albid Structured version   Visualization version   GIF version

Theorem albid 2218
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
albid.1 𝑥𝜑
albid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
albid (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))

Proof of Theorem albid
StepHypRef Expression
1 albid.1 . . 3 𝑥𝜑
21nf5ri 2191 . 2 (𝜑 → ∀𝑥𝜑)
3 albid.2 . 2 (𝜑 → (𝜓𝜒))
42, 3albidh 1872 1 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539  wnf 1789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-12 2174
This theorem depends on definitions:  df-bi 206  df-ex 1786  df-nf 1790
This theorem is referenced by:  nfbidf  2220  dral1vOLD  2369  dral2  2439  dral1  2440  sb4b  2476  sb4bOLD  2477  sbal1  2534  sbal2  2535  ralbidaOLD  3159  raleqf  3330  intab  4914  fin23lem32  10084  axrepndlem1  10332  axrepndlem2  10333  axrepnd  10334  axunnd  10336  axpowndlem2  10338  axpowndlem4  10340  axregndlem2  10343  axinfndlem1  10345  axinfnd  10346  axacndlem4  10350  axacndlem5  10351  axacnd  10352  iota5f  33648  exrecfnlem  35529  wl-equsald  35677  wl-sbnf1  35689  wl-2sb6d  35692  wl-sbalnae  35696  wl-mo2df  35704  wl-eudf  35706  wl-ax11-lem6  35720  wl-ax11-lem8  35722  ax12eq  36934  ax12el  36935  ax12v2-o  36942
  Copyright terms: Public domain W3C validator