MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  albid Structured version   Visualization version   GIF version

Theorem albid 2218
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
albid.1 𝑥𝜑
albid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
albid (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))

Proof of Theorem albid
StepHypRef Expression
1 albid.1 . . 3 𝑥𝜑
21nf5ri 2191 . 2 (𝜑 → ∀𝑥𝜑)
3 albid.2 . 2 (𝜑 → (𝜓𝜒))
42, 3albidh 1870 1 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-ex 1784  df-nf 1788
This theorem is referenced by:  nfbidf  2220  dral1vOLD  2368  dral2  2438  dral1  2439  sb4b  2475  sb4bOLD  2476  sbal1  2533  sbal2  2534  ralbidaOLD  3157  raleqf  3323  intab  4906  fin23lem32  10031  axrepndlem1  10279  axrepndlem2  10280  axrepnd  10281  axunnd  10283  axpowndlem2  10285  axpowndlem4  10287  axregndlem2  10290  axinfndlem1  10292  axinfnd  10293  axacndlem4  10297  axacndlem5  10298  axacnd  10299  iota5f  33571  exrecfnlem  35477  wl-equsald  35625  wl-sbnf1  35637  wl-2sb6d  35640  wl-sbalnae  35644  wl-mo2df  35652  wl-eudf  35654  wl-ax11-lem6  35668  wl-ax11-lem8  35670  ax12eq  36882  ax12el  36883  ax12v2-o  36890
  Copyright terms: Public domain W3C validator