Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > albid | Structured version Visualization version GIF version |
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
albid.1 | ⊢ Ⅎ𝑥𝜑 |
albid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
albid | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2191 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | albid.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | albidh 1870 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: nfbidf 2220 dral1vOLD 2368 dral2 2438 dral1 2439 sb4b 2475 sb4bOLD 2476 sbal1 2533 sbal2 2534 ralbidaOLD 3157 raleqf 3323 intab 4906 fin23lem32 10031 axrepndlem1 10279 axrepndlem2 10280 axrepnd 10281 axunnd 10283 axpowndlem2 10285 axpowndlem4 10287 axregndlem2 10290 axinfndlem1 10292 axinfnd 10293 axacndlem4 10297 axacndlem5 10298 axacnd 10299 iota5f 33571 exrecfnlem 35477 wl-equsald 35625 wl-sbnf1 35637 wl-2sb6d 35640 wl-sbalnae 35644 wl-mo2df 35652 wl-eudf 35654 wl-ax11-lem6 35668 wl-ax11-lem8 35670 ax12eq 36882 ax12el 36883 ax12v2-o 36890 |
Copyright terms: Public domain | W3C validator |