MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  albid Structured version   Visualization version   GIF version

Theorem albid 2215
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
albid.1 𝑥𝜑
albid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
albid (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))

Proof of Theorem albid
StepHypRef Expression
1 albid.1 . . 3 𝑥𝜑
21nf5ri 2188 . 2 (𝜑 → ∀𝑥𝜑)
3 albid.2 . 2 (𝜑 → (𝜓𝜒))
42, 3albidh 1869 1 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wnf 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-ex 1783  df-nf 1787
This theorem is referenced by:  nfbidf  2217  dral1vOLD  2368  dral2  2438  dral1  2439  sb4b  2475  sb4bOLD  2476  sbal1  2533  sbal2  2534  ralbidaOLD  3160  raleqf  3332  intab  4909  fin23lem32  10100  axrepndlem1  10348  axrepndlem2  10349  axrepnd  10350  axunnd  10352  axpowndlem2  10354  axpowndlem4  10356  axregndlem2  10359  axinfndlem1  10361  axinfnd  10362  axacndlem4  10366  axacndlem5  10367  axacnd  10368  iota5f  33669  exrecfnlem  35550  wl-equsald  35698  wl-sbnf1  35710  wl-2sb6d  35713  wl-sbalnae  35717  wl-mo2df  35725  wl-eudf  35727  wl-ax11-lem6  35741  wl-ax11-lem8  35743  ax12eq  36955  ax12el  36956  ax12v2-o  36963
  Copyright terms: Public domain W3C validator