Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > albid | Structured version Visualization version GIF version |
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
albid.1 | ⊢ Ⅎ𝑥𝜑 |
albid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
albid | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2193 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | albid.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | albidh 1874 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∀wal 1541 Ⅎwnf 1791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-ex 1788 df-nf 1792 |
This theorem is referenced by: nfbidf 2222 dral1v 2368 dral2 2437 dral1 2438 sb4b 2474 sb4bOLD 2475 sbal1 2532 sbal2 2533 ralbida 3153 raleqf 3309 intab 4889 fin23lem32 9958 axrepndlem1 10206 axrepndlem2 10207 axrepnd 10208 axunnd 10210 axpowndlem2 10212 axpowndlem4 10214 axregndlem2 10217 axinfndlem1 10219 axinfnd 10220 axacndlem4 10224 axacndlem5 10225 axacnd 10226 iota5f 33384 exrecfnlem 35287 wl-equsald 35435 wl-sbnf1 35447 wl-2sb6d 35450 wl-sbalnae 35454 wl-mo2df 35462 wl-eudf 35464 wl-ax11-lem6 35478 wl-ax11-lem8 35480 ax12eq 36692 ax12el 36693 ax12v2-o 36700 |
Copyright terms: Public domain | W3C validator |