| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > albid | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| albid.1 | ⊢ Ⅎ𝑥𝜑 |
| albid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| albid | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2196 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | albid.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | albidh 1866 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfbidf 2225 dral2 2437 dral1 2438 sb4b 2474 sbal1 2527 sbal2 2528 raleqf 3331 intab 4945 fin23lem32 10304 axrepndlem1 10552 axrepndlem2 10553 axrepnd 10554 axunnd 10556 axpowndlem2 10558 axpowndlem4 10560 axregndlem2 10563 axinfndlem1 10565 axinfnd 10566 axacndlem4 10570 axacndlem5 10571 axacnd 10572 iota5f 35718 exrecfnlem 37374 wl-equsald 37534 wl-equsaldv 37535 wl-sbnf1 37550 wl-2sb6d 37553 wl-sbalnae 37557 wl-mo2df 37565 wl-eudf 37567 wl-ax11-lem6 37585 wl-ax11-lem8 37587 ax12eq 38941 ax12el 38942 ax12v2-o 38949 unielss 43214 permaxrep 45003 permaxsep 45004 |
| Copyright terms: Public domain | W3C validator |