| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > albid | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| albid.1 | ⊢ Ⅎ𝑥𝜑 |
| albid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| albid | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2198 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | albid.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | albidh 1867 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1539 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: nfbidf 2227 dral2 2438 dral1 2439 sb4b 2475 sbal1 2528 sbal2 2529 raleqf 3321 intab 4926 fin23lem32 10235 axrepndlem1 10483 axrepndlem2 10484 axrepnd 10485 axunnd 10487 axpowndlem2 10489 axpowndlem4 10491 axregndlem2 10494 axinfndlem1 10496 axinfnd 10497 axacndlem4 10501 axacndlem5 10502 axacnd 10503 iota5f 35768 exrecfnlem 37423 wl-equsald 37583 wl-equsaldv 37584 wl-sbnf1 37599 wl-2sb6d 37602 wl-sbalnae 37606 wl-mo2df 37614 wl-eudf 37616 ax12eq 39039 ax12el 39040 ax12v2-o 39047 unielss 43310 permaxrep 45098 permaxsep 45099 |
| Copyright terms: Public domain | W3C validator |