Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > albid | Structured version Visualization version GIF version |
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
albid.1 | ⊢ Ⅎ𝑥𝜑 |
albid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
albid | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2188 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | albid.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | albidh 1869 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: nfbidf 2217 dral1vOLD 2368 dral2 2438 dral1 2439 sb4b 2475 sb4bOLD 2476 sbal1 2533 sbal2 2534 ralbidaOLD 3160 raleqf 3332 intab 4909 fin23lem32 10100 axrepndlem1 10348 axrepndlem2 10349 axrepnd 10350 axunnd 10352 axpowndlem2 10354 axpowndlem4 10356 axregndlem2 10359 axinfndlem1 10361 axinfnd 10362 axacndlem4 10366 axacndlem5 10367 axacnd 10368 iota5f 33669 exrecfnlem 35550 wl-equsald 35698 wl-sbnf1 35710 wl-2sb6d 35713 wl-sbalnae 35717 wl-mo2df 35725 wl-eudf 35727 wl-ax11-lem6 35741 wl-ax11-lem8 35743 ax12eq 36955 ax12el 36956 ax12v2-o 36963 |
Copyright terms: Public domain | W3C validator |