| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > albid | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| albid.1 | ⊢ Ⅎ𝑥𝜑 |
| albid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| albid | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2196 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | albid.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | albidh 1866 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfbidf 2225 dral2 2436 dral1 2437 sb4b 2473 sbal1 2526 sbal2 2527 raleqf 3326 intab 4938 fin23lem32 10273 axrepndlem1 10521 axrepndlem2 10522 axrepnd 10523 axunnd 10525 axpowndlem2 10527 axpowndlem4 10529 axregndlem2 10532 axinfndlem1 10534 axinfnd 10535 axacndlem4 10539 axacndlem5 10540 axacnd 10541 iota5f 35704 exrecfnlem 37360 wl-equsald 37520 wl-equsaldv 37521 wl-sbnf1 37536 wl-2sb6d 37539 wl-sbalnae 37543 wl-mo2df 37551 wl-eudf 37553 wl-ax11-lem6 37571 wl-ax11-lem8 37573 ax12eq 38927 ax12el 38928 ax12v2-o 38935 unielss 43200 permaxrep 44989 permaxsep 44990 |
| Copyright terms: Public domain | W3C validator |