MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  albid Structured version   Visualization version   GIF version

Theorem albid 2223
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
albid.1 𝑥𝜑
albid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
albid (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))

Proof of Theorem albid
StepHypRef Expression
1 albid.1 . . 3 𝑥𝜑
21nf5ri 2196 . 2 (𝜑 → ∀𝑥𝜑)
3 albid.2 . 2 (𝜑 → (𝜓𝜒))
42, 3albidh 1866 1 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-nf 1784
This theorem is referenced by:  nfbidf  2225  dral2  2436  dral1  2437  sb4b  2473  sbal1  2526  sbal2  2527  raleqf  3326  intab  4938  fin23lem32  10273  axrepndlem1  10521  axrepndlem2  10522  axrepnd  10523  axunnd  10525  axpowndlem2  10527  axpowndlem4  10529  axregndlem2  10532  axinfndlem1  10534  axinfnd  10535  axacndlem4  10539  axacndlem5  10540  axacnd  10541  iota5f  35704  exrecfnlem  37360  wl-equsald  37520  wl-equsaldv  37521  wl-sbnf1  37536  wl-2sb6d  37539  wl-sbalnae  37543  wl-mo2df  37551  wl-eudf  37553  wl-ax11-lem6  37571  wl-ax11-lem8  37573  ax12eq  38927  ax12el  38928  ax12v2-o  38935  unielss  43200  permaxrep  44989  permaxsep  44990
  Copyright terms: Public domain W3C validator