Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > albid | Structured version Visualization version GIF version |
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
albid.1 | ⊢ Ⅎ𝑥𝜑 |
albid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
albid | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2191 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | albid.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | albidh 1872 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 Ⅎwnf 1789 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-12 2174 |
This theorem depends on definitions: df-bi 206 df-ex 1786 df-nf 1790 |
This theorem is referenced by: nfbidf 2220 dral1vOLD 2369 dral2 2439 dral1 2440 sb4b 2476 sb4bOLD 2477 sbal1 2534 sbal2 2535 ralbidaOLD 3159 raleqf 3330 intab 4914 fin23lem32 10084 axrepndlem1 10332 axrepndlem2 10333 axrepnd 10334 axunnd 10336 axpowndlem2 10338 axpowndlem4 10340 axregndlem2 10343 axinfndlem1 10345 axinfnd 10346 axacndlem4 10350 axacndlem5 10351 axacnd 10352 iota5f 33648 exrecfnlem 35529 wl-equsald 35677 wl-sbnf1 35689 wl-2sb6d 35692 wl-sbalnae 35696 wl-mo2df 35704 wl-eudf 35706 wl-ax11-lem6 35720 wl-ax11-lem8 35722 ax12eq 36934 ax12el 36935 ax12v2-o 36942 |
Copyright terms: Public domain | W3C validator |