| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > albid | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| albid.1 | ⊢ Ⅎ𝑥𝜑 |
| albid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| albid | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2196 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | albid.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | albidh 1866 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfbidf 2225 dral2 2436 dral1 2437 sb4b 2473 sbal1 2526 sbal2 2527 raleqf 3318 intab 4928 fin23lem32 10238 axrepndlem1 10486 axrepndlem2 10487 axrepnd 10488 axunnd 10490 axpowndlem2 10492 axpowndlem4 10494 axregndlem2 10497 axinfndlem1 10499 axinfnd 10500 axacndlem4 10504 axacndlem5 10505 axacnd 10506 iota5f 35707 exrecfnlem 37363 wl-equsald 37523 wl-equsaldv 37524 wl-sbnf1 37539 wl-2sb6d 37542 wl-sbalnae 37546 wl-mo2df 37554 wl-eudf 37556 wl-ax11-lem6 37574 wl-ax11-lem8 37576 ax12eq 38930 ax12el 38931 ax12v2-o 38938 unielss 43201 permaxrep 44990 permaxsep 44991 |
| Copyright terms: Public domain | W3C validator |