MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  albid Structured version   Visualization version   GIF version

Theorem albid 2225
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
albid.1 𝑥𝜑
albid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
albid (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))

Proof of Theorem albid
StepHypRef Expression
1 albid.1 . . 3 𝑥𝜑
21nf5ri 2198 . 2 (𝜑 → ∀𝑥𝜑)
3 albid.2 . 2 (𝜑 → (𝜓𝜒))
42, 3albidh 1867 1 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-ex 1781  df-nf 1785
This theorem is referenced by:  nfbidf  2227  dral2  2438  dral1  2439  sb4b  2475  sbal1  2528  sbal2  2529  raleqf  3321  intab  4926  fin23lem32  10235  axrepndlem1  10483  axrepndlem2  10484  axrepnd  10485  axunnd  10487  axpowndlem2  10489  axpowndlem4  10491  axregndlem2  10494  axinfndlem1  10496  axinfnd  10497  axacndlem4  10501  axacndlem5  10502  axacnd  10503  iota5f  35768  exrecfnlem  37423  wl-equsald  37583  wl-equsaldv  37584  wl-sbnf1  37599  wl-2sb6d  37602  wl-sbalnae  37606  wl-mo2df  37614  wl-eudf  37616  ax12eq  39039  ax12el  39040  ax12v2-o  39047  unielss  43310  permaxrep  45098  permaxsep  45099
  Copyright terms: Public domain W3C validator