| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > albid | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| albid.1 | ⊢ Ⅎ𝑥𝜑 |
| albid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| albid | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2196 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | albid.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | albidh 1866 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfbidf 2225 dral2 2436 dral1 2437 sb4b 2473 sbal1 2526 sbal2 2527 raleqf 3329 intab 4942 fin23lem32 10297 axrepndlem1 10545 axrepndlem2 10546 axrepnd 10547 axunnd 10549 axpowndlem2 10551 axpowndlem4 10553 axregndlem2 10556 axinfndlem1 10558 axinfnd 10559 axacndlem4 10563 axacndlem5 10564 axacnd 10565 iota5f 35711 exrecfnlem 37367 wl-equsald 37527 wl-equsaldv 37528 wl-sbnf1 37543 wl-2sb6d 37546 wl-sbalnae 37550 wl-mo2df 37558 wl-eudf 37560 wl-ax11-lem6 37578 wl-ax11-lem8 37580 ax12eq 38934 ax12el 38935 ax12v2-o 38942 unielss 43207 permaxrep 44996 permaxsep 44997 |
| Copyright terms: Public domain | W3C validator |