MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  albid Structured version   Visualization version   GIF version

Theorem albid 2223
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
albid.1 𝑥𝜑
albid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
albid (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))

Proof of Theorem albid
StepHypRef Expression
1 albid.1 . . 3 𝑥𝜑
21nf5ri 2196 . 2 (𝜑 → ∀𝑥𝜑)
3 albid.2 . 2 (𝜑 → (𝜓𝜒))
42, 3albidh 1866 1 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1780  df-nf 1784
This theorem is referenced by:  nfbidf  2225  dral2  2436  dral1  2437  sb4b  2473  sbal1  2526  sbal2  2527  raleqf  3318  intab  4928  fin23lem32  10238  axrepndlem1  10486  axrepndlem2  10487  axrepnd  10488  axunnd  10490  axpowndlem2  10492  axpowndlem4  10494  axregndlem2  10497  axinfndlem1  10499  axinfnd  10500  axacndlem4  10504  axacndlem5  10505  axacnd  10506  iota5f  35707  exrecfnlem  37363  wl-equsald  37523  wl-equsaldv  37524  wl-sbnf1  37539  wl-2sb6d  37542  wl-sbalnae  37546  wl-mo2df  37554  wl-eudf  37556  wl-ax11-lem6  37574  wl-ax11-lem8  37576  ax12eq  38930  ax12el  38931  ax12v2-o  38938  unielss  43201  permaxrep  44990  permaxsep  44991
  Copyright terms: Public domain W3C validator