![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > albid | Structured version Visualization version GIF version |
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
albid.1 | ⊢ Ⅎ𝑥𝜑 |
albid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
albid | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2196 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | albid.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | albidh 1865 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-nf 1782 |
This theorem is referenced by: nfbidf 2225 dral1vOLD 2376 dral2 2446 dral1 2447 sb4b 2483 sbal1 2536 sbal2 2537 ralbidaOLD 3277 raleqf 3361 intab 5002 fin23lem32 10413 axrepndlem1 10661 axrepndlem2 10662 axrepnd 10663 axunnd 10665 axpowndlem2 10667 axpowndlem4 10669 axregndlem2 10672 axinfndlem1 10674 axinfnd 10675 axacndlem4 10679 axacndlem5 10680 axacnd 10681 iota5f 35686 exrecfnlem 37345 wl-equsald 37493 wl-equsaldv 37494 wl-sbnf1 37509 wl-2sb6d 37512 wl-sbalnae 37516 wl-mo2df 37524 wl-eudf 37526 wl-ax11-lem6 37544 wl-ax11-lem8 37546 ax12eq 38897 ax12el 38898 ax12v2-o 38905 unielss 43179 |
Copyright terms: Public domain | W3C validator |