MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  albid Structured version   Visualization version   GIF version

Theorem albid 2220
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
albid.1 𝑥𝜑
albid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
albid (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))

Proof of Theorem albid
StepHypRef Expression
1 albid.1 . . 3 𝑥𝜑
21nf5ri 2193 . 2 (𝜑 → ∀𝑥𝜑)
3 albid.2 . 2 (𝜑 → (𝜓𝜒))
42, 3albidh 1864 1 (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wnf 1780
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-12 2175
This theorem depends on definitions:  df-bi 207  df-ex 1777  df-nf 1781
This theorem is referenced by:  nfbidf  2222  dral1vOLD  2371  dral2  2441  dral1  2442  sb4b  2478  sbal1  2531  sbal2  2532  ralbidaOLD  3269  raleqf  3351  intab  4983  fin23lem32  10382  axrepndlem1  10630  axrepndlem2  10631  axrepnd  10632  axunnd  10634  axpowndlem2  10636  axpowndlem4  10638  axregndlem2  10641  axinfndlem1  10643  axinfnd  10644  axacndlem4  10648  axacndlem5  10649  axacnd  10650  iota5f  35704  exrecfnlem  37362  wl-equsald  37520  wl-equsaldv  37521  wl-sbnf1  37536  wl-2sb6d  37539  wl-sbalnae  37543  wl-mo2df  37551  wl-eudf  37553  wl-ax11-lem6  37571  wl-ax11-lem8  37573  ax12eq  38923  ax12el  38924  ax12v2-o  38931  unielss  43207
  Copyright terms: Public domain W3C validator