| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > albid | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| albid.1 | ⊢ Ⅎ𝑥𝜑 |
| albid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| albid | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | albid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | 1 | nf5ri 2195 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
| 3 | albid.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 4 | 2, 3 | albidh 1866 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfbidf 2224 dral1vOLD 2372 dral2 2442 dral1 2443 sb4b 2479 sbal1 2532 sbal2 2533 raleqf 3332 intab 4954 fin23lem32 10358 axrepndlem1 10606 axrepndlem2 10607 axrepnd 10608 axunnd 10610 axpowndlem2 10612 axpowndlem4 10614 axregndlem2 10617 axinfndlem1 10619 axinfnd 10620 axacndlem4 10624 axacndlem5 10625 axacnd 10626 iota5f 35741 exrecfnlem 37397 wl-equsald 37557 wl-equsaldv 37558 wl-sbnf1 37573 wl-2sb6d 37576 wl-sbalnae 37580 wl-mo2df 37588 wl-eudf 37590 wl-ax11-lem6 37608 wl-ax11-lem8 37610 ax12eq 38959 ax12el 38960 ax12v2-o 38967 unielss 43242 permaxrep 45031 permaxsep 45032 |
| Copyright terms: Public domain | W3C validator |