![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > albid | Structured version Visualization version GIF version |
Description: Formula-building rule for universal quantifier (deduction form). (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
albid.1 | ⊢ Ⅎ𝑥𝜑 |
albid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
albid | ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | albid.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | 1 | nf5ri 2193 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) |
3 | albid.2 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
4 | 2, 3 | albidh 1864 | 1 ⊢ (𝜑 → (∀𝑥𝜓 ↔ ∀𝑥𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 Ⅎwnf 1780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-ex 1777 df-nf 1781 |
This theorem is referenced by: nfbidf 2222 dral1vOLD 2371 dral2 2441 dral1 2442 sb4b 2478 sbal1 2531 sbal2 2532 ralbidaOLD 3269 raleqf 3351 intab 4983 fin23lem32 10382 axrepndlem1 10630 axrepndlem2 10631 axrepnd 10632 axunnd 10634 axpowndlem2 10636 axpowndlem4 10638 axregndlem2 10641 axinfndlem1 10643 axinfnd 10644 axacndlem4 10648 axacndlem5 10649 axacnd 10650 iota5f 35704 exrecfnlem 37362 wl-equsald 37520 wl-equsaldv 37521 wl-sbnf1 37536 wl-2sb6d 37539 wl-sbalnae 37543 wl-mo2df 37551 wl-eudf 37553 wl-ax11-lem6 37571 wl-ax11-lem8 37573 ax12eq 38923 ax12el 38924 ax12v2-o 38931 unielss 43207 |
Copyright terms: Public domain | W3C validator |