Proof of Theorem axrepnd
Step | Hyp | Ref
| Expression |
1 | | axrepndlem2 10280 |
. . . 4
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) |
2 | | nfnae 2434 |
. . . . . . 7
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑦 |
3 | | nfnae 2434 |
. . . . . . 7
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑧 |
4 | 2, 3 | nfan 1903 |
. . . . . 6
⊢
Ⅎ𝑥(¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) |
5 | | nfnae 2434 |
. . . . . 6
⊢
Ⅎ𝑥 ¬
∀𝑦 𝑦 = 𝑧 |
6 | 4, 5 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑥((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) |
7 | | nfnae 2434 |
. . . . . . . . 9
⊢
Ⅎ𝑧 ¬
∀𝑥 𝑥 = 𝑦 |
8 | | nfnae 2434 |
. . . . . . . . 9
⊢
Ⅎ𝑧 ¬
∀𝑥 𝑥 = 𝑧 |
9 | 7, 8 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑧(¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) |
10 | | nfnae 2434 |
. . . . . . . 8
⊢
Ⅎ𝑧 ¬
∀𝑦 𝑦 = 𝑧 |
11 | 9, 10 | nfan 1903 |
. . . . . . 7
⊢
Ⅎ𝑧((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) |
12 | | nfcvf 2935 |
. . . . . . . . . . . 12
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦𝑧) |
13 | 12 | adantl 481 |
. . . . . . . . . . 11
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦𝑧) |
14 | | nfcvf2 2936 |
. . . . . . . . . . . 12
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝑥) |
15 | 14 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦𝑥) |
16 | 13, 15 | nfeld 2917 |
. . . . . . . . . 10
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦 𝑧 ∈ 𝑥) |
17 | 16 | nf5rd 2192 |
. . . . . . . . 9
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (𝑧 ∈ 𝑥 → ∀𝑦 𝑧 ∈ 𝑥)) |
18 | | sp 2178 |
. . . . . . . . 9
⊢
(∀𝑦 𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑥) |
19 | 17, 18 | impbid1 224 |
. . . . . . . 8
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (𝑧 ∈ 𝑥 ↔ ∀𝑦 𝑧 ∈ 𝑥)) |
20 | | nfcvf2 2936 |
. . . . . . . . . . . . . 14
⊢ (¬
∀𝑥 𝑥 = 𝑧 → Ⅎ𝑧𝑥) |
21 | 20 | ad2antlr 723 |
. . . . . . . . . . . . 13
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑧𝑥) |
22 | | nfcvf2 2936 |
. . . . . . . . . . . . . 14
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑧𝑦) |
23 | 22 | adantl 481 |
. . . . . . . . . . . . 13
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑧𝑦) |
24 | 21, 23 | nfeld 2917 |
. . . . . . . . . . . 12
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑧 𝑥 ∈ 𝑦) |
25 | 24 | nf5rd 2192 |
. . . . . . . . . . 11
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (𝑥 ∈ 𝑦 → ∀𝑧 𝑥 ∈ 𝑦)) |
26 | | sp 2178 |
. . . . . . . . . . 11
⊢
(∀𝑧 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑦) |
27 | 25, 26 | impbid1 224 |
. . . . . . . . . 10
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (𝑥 ∈ 𝑦 ↔ ∀𝑧 𝑥 ∈ 𝑦)) |
28 | 27 | anbi1d 629 |
. . . . . . . . 9
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ((𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑) ↔ (∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |
29 | 6, 28 | exbid 2219 |
. . . . . . . 8
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑) ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |
30 | 19, 29 | bibi12d 345 |
. . . . . . 7
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ((𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)) ↔ (∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) |
31 | 11, 30 | albid 2218 |
. . . . . 6
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)) ↔ ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) |
32 | 31 | imbi2d 340 |
. . . . 5
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ((∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) ↔ (∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))))) |
33 | 6, 32 | exbid 2219 |
. . . 4
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) ↔ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))))) |
34 | 1, 33 | mpbid 231 |
. . 3
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) |
35 | 34 | exp31 419 |
. 2
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → (¬ ∀𝑦 𝑦 = 𝑧 → ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))))) |
36 | | nfae 2433 |
. . . . 5
⊢
Ⅎ𝑧∀𝑥 𝑥 = 𝑦 |
37 | | nd2 10275 |
. . . . . . 7
⊢
(∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 𝑧 ∈ 𝑥) |
38 | 37 | aecoms 2428 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑦 𝑧 ∈ 𝑥) |
39 | | nfae 2433 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑥 𝑥 = 𝑦 |
40 | | nd3 10276 |
. . . . . . . 8
⊢
(∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑥 ∈ 𝑦) |
41 | 40 | intnanrd 489 |
. . . . . . 7
⊢
(∀𝑥 𝑥 = 𝑦 → ¬ (∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)) |
42 | 39, 41 | nexd 2217 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑦 → ¬ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)) |
43 | 38, 42 | 2falsed 376 |
. . . . 5
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |
44 | 36, 43 | alrimi 2209 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |
45 | 44 | a1d 25 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑦 → (∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) |
46 | 45 | 19.8ad 2177 |
. 2
⊢
(∀𝑥 𝑥 = 𝑦 → ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) |
47 | | nfae 2433 |
. . . . 5
⊢
Ⅎ𝑧∀𝑥 𝑥 = 𝑧 |
48 | | nd4 10277 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑧 → ¬ ∀𝑦 𝑧 ∈ 𝑥) |
49 | | nfae 2433 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑥 𝑥 = 𝑧 |
50 | | nd1 10274 |
. . . . . . . . 9
⊢
(∀𝑧 𝑧 = 𝑥 → ¬ ∀𝑧 𝑥 ∈ 𝑦) |
51 | 50 | aecoms 2428 |
. . . . . . . 8
⊢
(∀𝑥 𝑥 = 𝑧 → ¬ ∀𝑧 𝑥 ∈ 𝑦) |
52 | 51 | intnanrd 489 |
. . . . . . 7
⊢
(∀𝑥 𝑥 = 𝑧 → ¬ (∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)) |
53 | 49, 52 | nexd 2217 |
. . . . . 6
⊢
(∀𝑥 𝑥 = 𝑧 → ¬ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)) |
54 | 48, 53 | 2falsed 376 |
. . . . 5
⊢
(∀𝑥 𝑥 = 𝑧 → (∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |
55 | 47, 54 | alrimi 2209 |
. . . 4
⊢
(∀𝑥 𝑥 = 𝑧 → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |
56 | 55 | a1d 25 |
. . 3
⊢
(∀𝑥 𝑥 = 𝑧 → (∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) |
57 | 56 | 19.8ad 2177 |
. 2
⊢
(∀𝑥 𝑥 = 𝑧 → ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) |
58 | | nfae 2433 |
. . . . 5
⊢
Ⅎ𝑧∀𝑦 𝑦 = 𝑧 |
59 | | nd1 10274 |
. . . . . 6
⊢
(∀𝑦 𝑦 = 𝑧 → ¬ ∀𝑦 𝑧 ∈ 𝑥) |
60 | | nfae 2433 |
. . . . . . 7
⊢
Ⅎ𝑥∀𝑦 𝑦 = 𝑧 |
61 | | nd2 10275 |
. . . . . . . . 9
⊢
(∀𝑧 𝑧 = 𝑦 → ¬ ∀𝑧 𝑥 ∈ 𝑦) |
62 | 61 | aecoms 2428 |
. . . . . . . 8
⊢
(∀𝑦 𝑦 = 𝑧 → ¬ ∀𝑧 𝑥 ∈ 𝑦) |
63 | 62 | intnanrd 489 |
. . . . . . 7
⊢
(∀𝑦 𝑦 = 𝑧 → ¬ (∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)) |
64 | 60, 63 | nexd 2217 |
. . . . . 6
⊢
(∀𝑦 𝑦 = 𝑧 → ¬ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)) |
65 | 59, 64 | 2falsed 376 |
. . . . 5
⊢
(∀𝑦 𝑦 = 𝑧 → (∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |
66 | 58, 65 | alrimi 2209 |
. . . 4
⊢
(∀𝑦 𝑦 = 𝑧 → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |
67 | 66 | a1d 25 |
. . 3
⊢
(∀𝑦 𝑦 = 𝑧 → (∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) |
68 | 67 | 19.8ad 2177 |
. 2
⊢
(∀𝑦 𝑦 = 𝑧 → ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) |
69 | 35, 46, 57, 68 | pm2.61iii 185 |
1
⊢
∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |