Proof of Theorem axrepnd
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | axrepndlem2 10634 | . . . 4
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) | 
| 2 |  | nfnae 2438 | . . . . . . 7
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑦 | 
| 3 |  | nfnae 2438 | . . . . . . 7
⊢
Ⅎ𝑥 ¬
∀𝑥 𝑥 = 𝑧 | 
| 4 | 2, 3 | nfan 1898 | . . . . . 6
⊢
Ⅎ𝑥(¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) | 
| 5 |  | nfnae 2438 | . . . . . 6
⊢
Ⅎ𝑥 ¬
∀𝑦 𝑦 = 𝑧 | 
| 6 | 4, 5 | nfan 1898 | . . . . 5
⊢
Ⅎ𝑥((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) | 
| 7 |  | nfnae 2438 | . . . . . . . . 9
⊢
Ⅎ𝑧 ¬
∀𝑥 𝑥 = 𝑦 | 
| 8 |  | nfnae 2438 | . . . . . . . . 9
⊢
Ⅎ𝑧 ¬
∀𝑥 𝑥 = 𝑧 | 
| 9 | 7, 8 | nfan 1898 | . . . . . . . 8
⊢
Ⅎ𝑧(¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) | 
| 10 |  | nfnae 2438 | . . . . . . . 8
⊢
Ⅎ𝑧 ¬
∀𝑦 𝑦 = 𝑧 | 
| 11 | 9, 10 | nfan 1898 | . . . . . . 7
⊢
Ⅎ𝑧((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) | 
| 12 |  | nfcvf 2931 | . . . . . . . . . . . 12
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑦𝑧) | 
| 13 | 12 | adantl 481 | . . . . . . . . . . 11
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦𝑧) | 
| 14 |  | nfcvf2 2932 | . . . . . . . . . . . 12
⊢ (¬
∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝑥) | 
| 15 | 14 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦𝑥) | 
| 16 | 13, 15 | nfeld 2916 | . . . . . . . . . 10
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦 𝑧 ∈ 𝑥) | 
| 17 | 16 | nf5rd 2195 | . . . . . . . . 9
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (𝑧 ∈ 𝑥 → ∀𝑦 𝑧 ∈ 𝑥)) | 
| 18 |  | sp 2182 | . . . . . . . . 9
⊢
(∀𝑦 𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑥) | 
| 19 | 17, 18 | impbid1 225 | . . . . . . . 8
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (𝑧 ∈ 𝑥 ↔ ∀𝑦 𝑧 ∈ 𝑥)) | 
| 20 |  | nfcvf2 2932 | . . . . . . . . . . . . . 14
⊢ (¬
∀𝑥 𝑥 = 𝑧 → Ⅎ𝑧𝑥) | 
| 21 | 20 | ad2antlr 727 | . . . . . . . . . . . . 13
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑧𝑥) | 
| 22 |  | nfcvf2 2932 | . . . . . . . . . . . . . 14
⊢ (¬
∀𝑦 𝑦 = 𝑧 → Ⅎ𝑧𝑦) | 
| 23 | 22 | adantl 481 | . . . . . . . . . . . . 13
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑧𝑦) | 
| 24 | 21, 23 | nfeld 2916 | . . . . . . . . . . . 12
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑧 𝑥 ∈ 𝑦) | 
| 25 | 24 | nf5rd 2195 | . . . . . . . . . . 11
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (𝑥 ∈ 𝑦 → ∀𝑧 𝑥 ∈ 𝑦)) | 
| 26 |  | sp 2182 | . . . . . . . . . . 11
⊢
(∀𝑧 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑦) | 
| 27 | 25, 26 | impbid1 225 | . . . . . . . . . 10
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (𝑥 ∈ 𝑦 ↔ ∀𝑧 𝑥 ∈ 𝑦)) | 
| 28 | 27 | anbi1d 631 | . . . . . . . . 9
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ((𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑) ↔ (∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) | 
| 29 | 6, 28 | exbid 2222 | . . . . . . . 8
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑) ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) | 
| 30 | 19, 29 | bibi12d 345 | . . . . . . 7
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ((𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)) ↔ (∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) | 
| 31 | 11, 30 | albid 2221 | . . . . . 6
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)) ↔ ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) | 
| 32 | 31 | imbi2d 340 | . . . . 5
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ((∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) ↔ (∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))))) | 
| 33 | 6, 32 | exbid 2222 | . . . 4
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(𝑧 ∈ 𝑥 ↔ ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) ↔ ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))))) | 
| 34 | 1, 33 | mpbid 232 | . . 3
⊢ (((¬
∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) | 
| 35 | 34 | exp31 419 | . 2
⊢ (¬
∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → (¬ ∀𝑦 𝑦 = 𝑧 → ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))))) | 
| 36 |  | nfae 2437 | . . . . 5
⊢
Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | 
| 37 |  | nd2 10629 | . . . . . . 7
⊢
(∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 𝑧 ∈ 𝑥) | 
| 38 | 37 | aecoms 2432 | . . . . . 6
⊢
(∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑦 𝑧 ∈ 𝑥) | 
| 39 |  | nfae 2437 | . . . . . . 7
⊢
Ⅎ𝑥∀𝑥 𝑥 = 𝑦 | 
| 40 |  | nd3 10630 | . . . . . . . 8
⊢
(∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑥 ∈ 𝑦) | 
| 41 | 40 | intnanrd 489 | . . . . . . 7
⊢
(∀𝑥 𝑥 = 𝑦 → ¬ (∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)) | 
| 42 | 39, 41 | nexd 2220 | . . . . . 6
⊢
(∀𝑥 𝑥 = 𝑦 → ¬ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)) | 
| 43 | 38, 42 | 2falsed 376 | . . . . 5
⊢
(∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) | 
| 44 | 36, 43 | alrimi 2212 | . . . 4
⊢
(∀𝑥 𝑥 = 𝑦 → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) | 
| 45 | 44 | a1d 25 | . . 3
⊢
(∀𝑥 𝑥 = 𝑦 → (∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) | 
| 46 | 45 | 19.8ad 2181 | . 2
⊢
(∀𝑥 𝑥 = 𝑦 → ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) | 
| 47 |  | nfae 2437 | . . . . 5
⊢
Ⅎ𝑧∀𝑥 𝑥 = 𝑧 | 
| 48 |  | nd4 10631 | . . . . . 6
⊢
(∀𝑥 𝑥 = 𝑧 → ¬ ∀𝑦 𝑧 ∈ 𝑥) | 
| 49 |  | nfae 2437 | . . . . . . 7
⊢
Ⅎ𝑥∀𝑥 𝑥 = 𝑧 | 
| 50 |  | nd1 10628 | . . . . . . . . 9
⊢
(∀𝑧 𝑧 = 𝑥 → ¬ ∀𝑧 𝑥 ∈ 𝑦) | 
| 51 | 50 | aecoms 2432 | . . . . . . . 8
⊢
(∀𝑥 𝑥 = 𝑧 → ¬ ∀𝑧 𝑥 ∈ 𝑦) | 
| 52 | 51 | intnanrd 489 | . . . . . . 7
⊢
(∀𝑥 𝑥 = 𝑧 → ¬ (∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)) | 
| 53 | 49, 52 | nexd 2220 | . . . . . 6
⊢
(∀𝑥 𝑥 = 𝑧 → ¬ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)) | 
| 54 | 48, 53 | 2falsed 376 | . . . . 5
⊢
(∀𝑥 𝑥 = 𝑧 → (∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) | 
| 55 | 47, 54 | alrimi 2212 | . . . 4
⊢
(∀𝑥 𝑥 = 𝑧 → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) | 
| 56 | 55 | a1d 25 | . . 3
⊢
(∀𝑥 𝑥 = 𝑧 → (∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) | 
| 57 | 56 | 19.8ad 2181 | . 2
⊢
(∀𝑥 𝑥 = 𝑧 → ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) | 
| 58 |  | nfae 2437 | . . . . 5
⊢
Ⅎ𝑧∀𝑦 𝑦 = 𝑧 | 
| 59 |  | nd1 10628 | . . . . . 6
⊢
(∀𝑦 𝑦 = 𝑧 → ¬ ∀𝑦 𝑧 ∈ 𝑥) | 
| 60 |  | nfae 2437 | . . . . . . 7
⊢
Ⅎ𝑥∀𝑦 𝑦 = 𝑧 | 
| 61 |  | nd2 10629 | . . . . . . . . 9
⊢
(∀𝑧 𝑧 = 𝑦 → ¬ ∀𝑧 𝑥 ∈ 𝑦) | 
| 62 | 61 | aecoms 2432 | . . . . . . . 8
⊢
(∀𝑦 𝑦 = 𝑧 → ¬ ∀𝑧 𝑥 ∈ 𝑦) | 
| 63 | 62 | intnanrd 489 | . . . . . . 7
⊢
(∀𝑦 𝑦 = 𝑧 → ¬ (∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)) | 
| 64 | 60, 63 | nexd 2220 | . . . . . 6
⊢
(∀𝑦 𝑦 = 𝑧 → ¬ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)) | 
| 65 | 59, 64 | 2falsed 376 | . . . . 5
⊢
(∀𝑦 𝑦 = 𝑧 → (∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) | 
| 66 | 58, 65 | alrimi 2212 | . . . 4
⊢
(∀𝑦 𝑦 = 𝑧 → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) | 
| 67 | 66 | a1d 25 | . . 3
⊢
(∀𝑦 𝑦 = 𝑧 → (∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) | 
| 68 | 67 | 19.8ad 2181 | . 2
⊢
(∀𝑦 𝑦 = 𝑧 → ∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑)))) | 
| 69 | 35, 46, 57, 68 | pm2.61iii 185 | 1
⊢
∃𝑥(∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧 ∈ 𝑥 ↔ ∃𝑥(∀𝑧 𝑥 ∈ 𝑦 ∧ ∀𝑦𝜑))) |