Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  axrepnd Structured version   Visualization version   GIF version

Theorem axrepnd 10008
 Description: A version of the Axiom of Replacement with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 2383. (Contributed by NM, 2-Jan-2002.) (New usage is discouraged.)
Assertion
Ref Expression
axrepnd 𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑)))

Proof of Theorem axrepnd
StepHypRef Expression
1 axrepndlem2 10007 . . . 4 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ∃𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑))))
2 nfnae 2449 . . . . . . 7 𝑥 ¬ ∀𝑥 𝑥 = 𝑦
3 nfnae 2449 . . . . . . 7 𝑥 ¬ ∀𝑥 𝑥 = 𝑧
42, 3nfan 1893 . . . . . 6 𝑥(¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧)
5 nfnae 2449 . . . . . 6 𝑥 ¬ ∀𝑦 𝑦 = 𝑧
64, 5nfan 1893 . . . . 5 𝑥((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧)
7 nfnae 2449 . . . . . . . . 9 𝑧 ¬ ∀𝑥 𝑥 = 𝑦
8 nfnae 2449 . . . . . . . . 9 𝑧 ¬ ∀𝑥 𝑥 = 𝑧
97, 8nfan 1893 . . . . . . . 8 𝑧(¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧)
10 nfnae 2449 . . . . . . . 8 𝑧 ¬ ∀𝑦 𝑦 = 𝑧
119, 10nfan 1893 . . . . . . 7 𝑧((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧)
12 nfcvf 3005 . . . . . . . . . . . 12 (¬ ∀𝑦 𝑦 = 𝑧𝑦𝑧)
1312adantl 484 . . . . . . . . . . 11 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑦𝑧)
14 nfcvf2 3006 . . . . . . . . . . . 12 (¬ ∀𝑥 𝑥 = 𝑦𝑦𝑥)
1514ad2antrr 724 . . . . . . . . . . 11 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑦𝑥)
1613, 15nfeld 2987 . . . . . . . . . 10 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑦 𝑧𝑥)
1716nf5rd 2188 . . . . . . . . 9 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (𝑧𝑥 → ∀𝑦 𝑧𝑥))
18 sp 2174 . . . . . . . . 9 (∀𝑦 𝑧𝑥𝑧𝑥)
1917, 18impbid1 227 . . . . . . . 8 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (𝑧𝑥 ↔ ∀𝑦 𝑧𝑥))
20 nfcvf2 3006 . . . . . . . . . . . . . 14 (¬ ∀𝑥 𝑥 = 𝑧𝑧𝑥)
2120ad2antlr 725 . . . . . . . . . . . . 13 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑧𝑥)
22 nfcvf2 3006 . . . . . . . . . . . . . 14 (¬ ∀𝑦 𝑦 = 𝑧𝑧𝑦)
2322adantl 484 . . . . . . . . . . . . 13 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → 𝑧𝑦)
2421, 23nfeld 2987 . . . . . . . . . . . 12 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → Ⅎ𝑧 𝑥𝑦)
2524nf5rd 2188 . . . . . . . . . . 11 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (𝑥𝑦 → ∀𝑧 𝑥𝑦))
26 sp 2174 . . . . . . . . . . 11 (∀𝑧 𝑥𝑦𝑥𝑦)
2725, 26impbid1 227 . . . . . . . . . 10 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (𝑥𝑦 ↔ ∀𝑧 𝑥𝑦))
2827anbi1d 631 . . . . . . . . 9 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ((𝑥𝑦 ∧ ∀𝑦𝜑) ↔ (∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑)))
296, 28exbid 2217 . . . . . . . 8 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑) ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑)))
3019, 29bibi12d 348 . . . . . . 7 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ((𝑧𝑥 ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑)) ↔ (∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))))
3111, 30albid 2216 . . . . . 6 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑)) ↔ ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))))
3231imbi2d 343 . . . . 5 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ((∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑))) ↔ (∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑)))))
336, 32exbid 2217 . . . 4 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → (∃𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(𝑧𝑥 ↔ ∃𝑥(𝑥𝑦 ∧ ∀𝑦𝜑))) ↔ ∃𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑)))))
341, 33mpbid 234 . . 3 (((¬ ∀𝑥 𝑥 = 𝑦 ∧ ¬ ∀𝑥 𝑥 = 𝑧) ∧ ¬ ∀𝑦 𝑦 = 𝑧) → ∃𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))))
3534exp31 422 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → (¬ ∀𝑥 𝑥 = 𝑧 → (¬ ∀𝑦 𝑦 = 𝑧 → ∃𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))))))
36 nfae 2448 . . . . 5 𝑧𝑥 𝑥 = 𝑦
37 nd2 10002 . . . . . . 7 (∀𝑦 𝑦 = 𝑥 → ¬ ∀𝑦 𝑧𝑥)
3837aecoms 2443 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑦 𝑧𝑥)
39 nfae 2448 . . . . . . 7 𝑥𝑥 𝑥 = 𝑦
40 nd3 10003 . . . . . . . 8 (∀𝑥 𝑥 = 𝑦 → ¬ ∀𝑧 𝑥𝑦)
4140intnanrd 492 . . . . . . 7 (∀𝑥 𝑥 = 𝑦 → ¬ (∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))
4239, 41nexd 2215 . . . . . 6 (∀𝑥 𝑥 = 𝑦 → ¬ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))
4338, 422falsed 379 . . . . 5 (∀𝑥 𝑥 = 𝑦 → (∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑)))
4436, 43alrimi 2205 . . . 4 (∀𝑥 𝑥 = 𝑦 → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑)))
4544a1d 25 . . 3 (∀𝑥 𝑥 = 𝑦 → (∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))))
464519.8ad 2173 . 2 (∀𝑥 𝑥 = 𝑦 → ∃𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))))
47 nfae 2448 . . . . 5 𝑧𝑥 𝑥 = 𝑧
48 nd4 10004 . . . . . 6 (∀𝑥 𝑥 = 𝑧 → ¬ ∀𝑦 𝑧𝑥)
49 nfae 2448 . . . . . . 7 𝑥𝑥 𝑥 = 𝑧
50 nd1 10001 . . . . . . . . 9 (∀𝑧 𝑧 = 𝑥 → ¬ ∀𝑧 𝑥𝑦)
5150aecoms 2443 . . . . . . . 8 (∀𝑥 𝑥 = 𝑧 → ¬ ∀𝑧 𝑥𝑦)
5251intnanrd 492 . . . . . . 7 (∀𝑥 𝑥 = 𝑧 → ¬ (∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))
5349, 52nexd 2215 . . . . . 6 (∀𝑥 𝑥 = 𝑧 → ¬ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))
5448, 532falsed 379 . . . . 5 (∀𝑥 𝑥 = 𝑧 → (∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑)))
5547, 54alrimi 2205 . . . 4 (∀𝑥 𝑥 = 𝑧 → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑)))
5655a1d 25 . . 3 (∀𝑥 𝑥 = 𝑧 → (∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))))
575619.8ad 2173 . 2 (∀𝑥 𝑥 = 𝑧 → ∃𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))))
58 nfae 2448 . . . . 5 𝑧𝑦 𝑦 = 𝑧
59 nd1 10001 . . . . . 6 (∀𝑦 𝑦 = 𝑧 → ¬ ∀𝑦 𝑧𝑥)
60 nfae 2448 . . . . . . 7 𝑥𝑦 𝑦 = 𝑧
61 nd2 10002 . . . . . . . . 9 (∀𝑧 𝑧 = 𝑦 → ¬ ∀𝑧 𝑥𝑦)
6261aecoms 2443 . . . . . . . 8 (∀𝑦 𝑦 = 𝑧 → ¬ ∀𝑧 𝑥𝑦)
6362intnanrd 492 . . . . . . 7 (∀𝑦 𝑦 = 𝑧 → ¬ (∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))
6460, 63nexd 2215 . . . . . 6 (∀𝑦 𝑦 = 𝑧 → ¬ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))
6559, 642falsed 379 . . . . 5 (∀𝑦 𝑦 = 𝑧 → (∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑)))
6658, 65alrimi 2205 . . . 4 (∀𝑦 𝑦 = 𝑧 → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑)))
6766a1d 25 . . 3 (∀𝑦 𝑦 = 𝑧 → (∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))))
686719.8ad 2173 . 2 (∀𝑦 𝑦 = 𝑧 → ∃𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑))))
6935, 46, 57, 68pm2.61iii 187 1 𝑥(∃𝑦𝑧(𝜑𝑧 = 𝑦) → ∀𝑧(∀𝑦 𝑧𝑥 ↔ ∃𝑥(∀𝑧 𝑥𝑦 ∧ ∀𝑦𝜑)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 208   ∧ wa 398  ∀wal 1528  ∃wex 1773  Ⅎwnfc 2959 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2383  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pr 5320  ax-reg 9048 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-v 3495  df-dif 3937  df-un 3939  df-nul 4290  df-sn 4560  df-pr 4562 This theorem is referenced by:  zfcndrep  10028  axrepprim  32916
 Copyright terms: Public domain W3C validator