![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ralin | Structured version Visualization version GIF version |
Description: Restricted universal quantification over intersection. (Contributed by Peter Mazsa, 8-Sep-2023.) |
Ref | Expression |
---|---|
ralin | ⊢ (∀𝑥 ∈ (𝐴 ∩ 𝐵)𝜑 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3957 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | 1 | imbi1i 349 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) → 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝜑)) |
3 | impexp 450 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝜑) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 → 𝜑))) | |
4 | 2, 3 | bitri 275 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) → 𝜑) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 → 𝜑))) |
5 | 4 | ralbii2 3081 | 1 ⊢ (∀𝑥 ∈ (𝐴 ∩ 𝐵)𝜑 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2098 ∀wral 3053 ∩ cin 3940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ral 3054 df-v 3468 df-in 3948 |
This theorem is referenced by: ref5 37676 |
Copyright terms: Public domain | W3C validator |