MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralin Structured version   Visualization version   GIF version

Theorem ralin 4215
Description: Restricted universal quantification over intersection. (Contributed by Peter Mazsa, 8-Sep-2023.)
Assertion
Ref Expression
ralin (∀𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∀𝑥𝐴 (𝑥𝐵𝜑))

Proof of Theorem ralin
StepHypRef Expression
1 elin 3933 . . . 4 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
21imbi1i 349 . . 3 ((𝑥 ∈ (𝐴𝐵) → 𝜑) ↔ ((𝑥𝐴𝑥𝐵) → 𝜑))
3 impexp 450 . . 3 (((𝑥𝐴𝑥𝐵) → 𝜑) ↔ (𝑥𝐴 → (𝑥𝐵𝜑)))
42, 3bitri 275 . 2 ((𝑥 ∈ (𝐴𝐵) → 𝜑) ↔ (𝑥𝐴 → (𝑥𝐵𝜑)))
54ralbii2 3072 1 (∀𝑥 ∈ (𝐴𝐵)𝜑 ↔ ∀𝑥𝐴 (𝑥𝐵𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109  wral 3045  cin 3916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-v 3452  df-in 3924
This theorem is referenced by:  ref5  38308  sswfaxreg  44984
  Copyright terms: Public domain W3C validator