Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ralin | Structured version Visualization version GIF version |
Description: Restricted universal quantification over intersection. (Contributed by Peter Mazsa, 8-Sep-2023.) |
Ref | Expression |
---|---|
ralin | ⊢ (∀𝑥 ∈ (𝐴 ∩ 𝐵)𝜑 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3908 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | 1 | imbi1i 350 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) → 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝜑)) |
3 | impexp 452 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝜑) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 → 𝜑))) | |
4 | 2, 3 | bitri 275 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) → 𝜑) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 → 𝜑))) |
5 | 4 | ralbii2 3088 | 1 ⊢ (∀𝑥 ∈ (𝐴 ∩ 𝐵)𝜑 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∈ wcel 2104 ∀wral 3061 ∩ cin 3891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-v 3439 df-in 3899 |
This theorem is referenced by: ref5 36526 |
Copyright terms: Public domain | W3C validator |