![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ralin | Structured version Visualization version GIF version |
Description: Restricted universal quantification over intersection. (Contributed by Peter Mazsa, 8-Sep-2023.) |
Ref | Expression |
---|---|
ralin | ⊢ (∀𝑥 ∈ (𝐴 ∩ 𝐵)𝜑 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin 3961 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐵) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵)) | |
2 | 1 | imbi1i 349 | . . 3 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) → 𝜑) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝜑)) |
3 | impexp 450 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ 𝐵) → 𝜑) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 → 𝜑))) | |
4 | 2, 3 | bitri 275 | . 2 ⊢ ((𝑥 ∈ (𝐴 ∩ 𝐵) → 𝜑) ↔ (𝑥 ∈ 𝐴 → (𝑥 ∈ 𝐵 → 𝜑))) |
5 | 4 | ralbii2 3085 | 1 ⊢ (∀𝑥 ∈ (𝐴 ∩ 𝐵)𝜑 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ 𝐵 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2099 ∀wral 3057 ∩ cin 3944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3058 df-v 3472 df-in 3952 |
This theorem is referenced by: ref5 37779 |
Copyright terms: Public domain | W3C validator |