Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coideq Structured version   Visualization version   GIF version

Theorem coideq 38242
Description: Equality theorem for composition of two classes. (Contributed by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
coideq (𝐴 = 𝐵 → (𝐴𝐴) = (𝐵𝐵))

Proof of Theorem coideq
StepHypRef Expression
1 coeq1 5875 . 2 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐵𝐴))
2 coeq2 5876 . 2 (𝐴 = 𝐵 → (𝐵𝐴) = (𝐵𝐵))
31, 2eqtrd 2777 1 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐵𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  ccom 5697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-ss 3983  df-br 5152  df-opab 5214  df-co 5702
This theorem is referenced by:  eltrrels2  38575  trreleq  38578  eleqvrels2  38588
  Copyright terms: Public domain W3C validator