![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > coideq | Structured version Visualization version GIF version |
Description: Equality theorem for composition of two classes. (Contributed by Peter Mazsa, 23-Sep-2021.) |
Ref | Expression |
---|---|
coideq | ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐴) = (𝐵 ∘ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeq1 5483 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐴) = (𝐵 ∘ 𝐴)) | |
2 | coeq2 5484 | . 2 ⊢ (𝐴 = 𝐵 → (𝐵 ∘ 𝐴) = (𝐵 ∘ 𝐵)) | |
3 | 1, 2 | eqtrd 2833 | 1 ⊢ (𝐴 = 𝐵 → (𝐴 ∘ 𝐴) = (𝐵 ∘ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∘ ccom 5316 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-in 3776 df-ss 3783 df-br 4844 df-opab 4906 df-co 5321 |
This theorem is referenced by: eltrrels2 34819 trreleq 34822 eleqvrels2 34830 |
Copyright terms: Public domain | W3C validator |