Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coideq Structured version   Visualization version   GIF version

Theorem coideq 36312
Description: Equality theorem for composition of two classes. (Contributed by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
coideq (𝐴 = 𝐵 → (𝐴𝐴) = (𝐵𝐵))

Proof of Theorem coideq
StepHypRef Expression
1 coeq1 5755 . 2 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐵𝐴))
2 coeq2 5756 . 2 (𝐴 = 𝐵 → (𝐵𝐴) = (𝐵𝐵))
31, 2eqtrd 2778 1 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐵𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  ccom 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-br 5071  df-opab 5133  df-co 5589
This theorem is referenced by:  eltrrels2  36620  trreleq  36623  eleqvrels2  36632
  Copyright terms: Public domain W3C validator