Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coideq Structured version   Visualization version   GIF version

Theorem coideq 34510
 Description: Equality theorem for composition of two classes. (Contributed by Peter Mazsa, 23-Sep-2021.)
Assertion
Ref Expression
coideq (𝐴 = 𝐵 → (𝐴𝐴) = (𝐵𝐵))

Proof of Theorem coideq
StepHypRef Expression
1 coeq1 5483 . 2 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐵𝐴))
2 coeq2 5484 . 2 (𝐴 = 𝐵 → (𝐵𝐴) = (𝐵𝐵))
31, 2eqtrd 2833 1 (𝐴 = 𝐵 → (𝐴𝐴) = (𝐵𝐵))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1653   ∘ ccom 5316 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777 This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-in 3776  df-ss 3783  df-br 4844  df-opab 4906  df-co 5321 This theorem is referenced by:  eltrrels2  34819  trreleq  34822  eleqvrels2  34830
 Copyright terms: Public domain W3C validator