| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf3and | Structured version Visualization version GIF version | ||
| Description: Deduction form of bound-variable hypothesis builder nf3an 1901. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 16-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfand.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| nfand.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| nfand.3 | ⊢ (𝜑 → Ⅎ𝑥𝜃) |
| Ref | Expression |
|---|---|
| nf3and | ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 2 | nfand.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 3 | nfand.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 4 | 2, 3 | nfand 1897 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) |
| 5 | nfand.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜃) | |
| 6 | 4, 5 | nfand 1897 | . 2 ⊢ (𝜑 → Ⅎ𝑥((𝜓 ∧ 𝜒) ∧ 𝜃)) |
| 7 | 1, 6 | nfxfrd 1854 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfttrcld 9729 |
| Copyright terms: Public domain | W3C validator |