|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > nf3and | Structured version Visualization version GIF version | ||
| Description: Deduction form of bound-variable hypothesis builder nf3an 1900. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 16-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| nfand.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) | 
| nfand.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) | 
| nfand.3 | ⊢ (𝜑 → Ⅎ𝑥𝜃) | 
| Ref | Expression | 
|---|---|
| nf3and | ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒 ∧ 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-3an 1088 | . 2 ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) ↔ ((𝜓 ∧ 𝜒) ∧ 𝜃)) | |
| 2 | nfand.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 3 | nfand.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 4 | 2, 3 | nfand 1896 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) | 
| 5 | nfand.3 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜃) | |
| 6 | 4, 5 | nfand 1896 | . 2 ⊢ (𝜑 → Ⅎ𝑥((𝜓 ∧ 𝜒) ∧ 𝜃)) | 
| 7 | 1, 6 | nfxfrd 1853 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒 ∧ 𝜃)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 Ⅎwnf 1782 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-ex 1779 df-nf 1783 | 
| This theorem is referenced by: nfttrcld 9751 | 
| Copyright terms: Public domain | W3C validator |