![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfand | Structured version Visualization version GIF version |
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓 ∧ 𝜒). (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfand.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
nfand.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
Ref | Expression |
---|---|
nfand | ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-an 386 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ ¬ (𝜓 → ¬ 𝜒)) | |
2 | nfand.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
3 | nfand.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
4 | 3 | nfnd 1955 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜒) |
5 | 2, 4 | nfimd 1993 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → ¬ 𝜒)) |
6 | 5 | nfnd 1955 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ (𝜓 → ¬ 𝜒)) |
7 | 1, 6 | nfxfrd 1950 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 Ⅎwnf 1879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-ex 1876 df-nf 1880 |
This theorem is referenced by: nf3and 1998 nfan 1999 nfbid 2002 nfeud2 2630 nfeld 2950 nfreud 3293 nfrmod 3294 nfrmo 3296 nfrab 3305 nfifd 4305 nfdisj 4823 dfid3 5221 nfriotad 6847 axrepndlem1 9702 axrepndlem2 9703 axunndlem1 9705 axunnd 9706 axregndlem2 9713 axinfndlem1 9715 axinfnd 9716 axacndlem4 9720 axacndlem5 9721 axacnd 9722 riotasv2d 34978 |
Copyright terms: Public domain | W3C validator |