MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfand Structured version   Visualization version   GIF version

Theorem nfand 1896
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓𝜒). (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfand.1 (𝜑 → Ⅎ𝑥𝜓)
nfand.2 (𝜑 → Ⅎ𝑥𝜒)
Assertion
Ref Expression
nfand (𝜑 → Ⅎ𝑥(𝜓𝜒))

Proof of Theorem nfand
StepHypRef Expression
1 df-an 396 . 2 ((𝜓𝜒) ↔ ¬ (𝜓 → ¬ 𝜒))
2 nfand.1 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
3 nfand.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜒)
43nfnd 1857 . . . 4 (𝜑 → Ⅎ𝑥 ¬ 𝜒)
52, 4nfimd 1893 . . 3 (𝜑 → Ⅎ𝑥(𝜓 → ¬ 𝜒))
65nfnd 1857 . 2 (𝜑 → Ⅎ𝑥 ¬ (𝜓 → ¬ 𝜒))
71, 6nfxfrd 1853 1 (𝜑 → Ⅎ𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wnf 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1779  df-nf 1783
This theorem is referenced by:  nf3and  1897  nfan  1898  nfbid  1901  nfeud2  2588  nfeudw  2589  nfeld  2909  nfreuwOLD  3409  nfrmowOLD  3410  nfrmod  3415  nfreud  3416  nfrmo  3417  nfrabwOLD  3459  nfrab  3461  nfifd  4535  nfdisjw  5102  nfdisj  5103  nfopabd  5191  dfid3  5561  nfriotadw  7378  nfriotad  7381  axrepndlem1  10614  axrepndlem2  10615  axunndlem1  10617  axunnd  10618  axregndlem2  10625  axinfndlem1  10627  axinfnd  10628  axacndlem4  10632  axacndlem5  10633  axacnd  10634  axsepg2  35071  axsepg2ALT  35072  bj-gabima  36916  cbvreud  37349  riotasv2d  38933
  Copyright terms: Public domain W3C validator