| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfand | Structured version Visualization version GIF version | ||
| Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓 ∧ 𝜒). (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfand.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| nfand.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| Ref | Expression |
|---|---|
| nfand | ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-an 396 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ ¬ (𝜓 → ¬ 𝜒)) | |
| 2 | nfand.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 3 | nfand.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 4 | 3 | nfnd 1858 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜒) |
| 5 | 2, 4 | nfimd 1894 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → ¬ 𝜒)) |
| 6 | 5 | nfnd 1858 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ (𝜓 → ¬ 𝜒)) |
| 7 | 1, 6 | nfxfrd 1854 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nf3and 1898 nfan 1899 nfbid 1902 nfeud2 2590 nfeudw 2591 nfeld 2911 nfreuwOLD 3410 nfrmowOLD 3411 nfrmod 3416 nfreud 3417 nfrmo 3418 nfrabwOLD 3460 nfrab 3462 nfifd 4535 nfdisjw 5103 nfdisj 5104 nfopabd 5192 dfid3 5556 nfriotadw 7375 nfriotad 7378 axrepndlem1 10611 axrepndlem2 10612 axunndlem1 10614 axunnd 10615 axregndlem2 10622 axinfndlem1 10624 axinfnd 10625 axacndlem4 10629 axacndlem5 10630 axacnd 10631 axsepg2 35118 axsepg2ALT 35119 bj-gabima 36963 cbvreud 37396 riotasv2d 38980 |
| Copyright terms: Public domain | W3C validator |