![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfand | Structured version Visualization version GIF version |
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓 ∧ 𝜒). (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfand.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
nfand.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
Ref | Expression |
---|---|
nfand | ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-an 398 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ ¬ (𝜓 → ¬ 𝜒)) | |
2 | nfand.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
3 | nfand.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
4 | 3 | nfnd 1862 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜒) |
5 | 2, 4 | nfimd 1898 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → ¬ 𝜒)) |
6 | 5 | nfnd 1862 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ (𝜓 → ¬ 𝜒)) |
7 | 1, 6 | nfxfrd 1857 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-nf 1787 |
This theorem is referenced by: nf3and 1902 nfan 1903 nfbid 1906 nfeud2 2585 nfeudw 2586 nfeld 2915 nfreuwOLD 3423 nfrmowOLD 3424 nfrmod 3429 nfreud 3430 nfrmo 3431 nfrabwOLD 3470 nfrab 3473 nfifd 4558 nfdisjw 5126 nfdisj 5127 nfopabd 5217 dfid3 5578 nfriotadw 7373 nfriotad 7377 axrepndlem1 10587 axrepndlem2 10588 axunndlem1 10590 axunnd 10591 axregndlem2 10598 axinfndlem1 10600 axinfnd 10601 axacndlem4 10605 axacndlem5 10606 axacnd 10607 bj-gabima 35820 cbvreud 36254 riotasv2d 37827 |
Copyright terms: Public domain | W3C validator |