MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfand Structured version   Visualization version   GIF version

Theorem nfand 1897
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓𝜒). (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfand.1 (𝜑 → Ⅎ𝑥𝜓)
nfand.2 (𝜑 → Ⅎ𝑥𝜒)
Assertion
Ref Expression
nfand (𝜑 → Ⅎ𝑥(𝜓𝜒))

Proof of Theorem nfand
StepHypRef Expression
1 df-an 396 . 2 ((𝜓𝜒) ↔ ¬ (𝜓 → ¬ 𝜒))
2 nfand.1 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
3 nfand.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜒)
43nfnd 1858 . . . 4 (𝜑 → Ⅎ𝑥 ¬ 𝜒)
52, 4nfimd 1894 . . 3 (𝜑 → Ⅎ𝑥(𝜓 → ¬ 𝜒))
65nfnd 1858 . 2 (𝜑 → Ⅎ𝑥 ¬ (𝜓 → ¬ 𝜒))
71, 6nfxfrd 1854 1 (𝜑 → Ⅎ𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wnf 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1780  df-nf 1784
This theorem is referenced by:  nf3and  1898  nfan  1899  nfbid  1902  nfeud2  2590  nfeudw  2591  nfeld  2911  nfreuwOLD  3410  nfrmowOLD  3411  nfrmod  3416  nfreud  3417  nfrmo  3418  nfrabwOLD  3460  nfrab  3462  nfifd  4535  nfdisjw  5103  nfdisj  5104  nfopabd  5192  dfid3  5556  nfriotadw  7375  nfriotad  7378  axrepndlem1  10611  axrepndlem2  10612  axunndlem1  10614  axunnd  10615  axregndlem2  10622  axinfndlem1  10624  axinfnd  10625  axacndlem4  10629  axacndlem5  10630  axacnd  10631  axsepg2  35118  axsepg2ALT  35119  bj-gabima  36963  cbvreud  37396  riotasv2d  38980
  Copyright terms: Public domain W3C validator