MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfand Structured version   Visualization version   GIF version

Theorem nfand 1898
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓𝜒). (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfand.1 (𝜑 → Ⅎ𝑥𝜓)
nfand.2 (𝜑 → Ⅎ𝑥𝜒)
Assertion
Ref Expression
nfand (𝜑 → Ⅎ𝑥(𝜓𝜒))

Proof of Theorem nfand
StepHypRef Expression
1 df-an 396 . 2 ((𝜓𝜒) ↔ ¬ (𝜓 → ¬ 𝜒))
2 nfand.1 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
3 nfand.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜒)
43nfnd 1859 . . . 4 (𝜑 → Ⅎ𝑥 ¬ 𝜒)
52, 4nfimd 1895 . . 3 (𝜑 → Ⅎ𝑥(𝜓 → ¬ 𝜒))
65nfnd 1859 . 2 (𝜑 → Ⅎ𝑥 ¬ (𝜓 → ¬ 𝜒))
71, 6nfxfrd 1855 1 (𝜑 → Ⅎ𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wnf 1784
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1781  df-nf 1785
This theorem is referenced by:  nf3and  1899  nfan  1900  nfbid  1903  nfeud2  2585  nfeudw  2586  nfeld  2906  nfrmod  3391  nfreud  3392  nfrmo  3393  nfrab  3434  nfifd  4505  nfdisjw  5070  nfdisj  5071  nfopabd  5159  dfid3  5514  nfriotadw  7311  nfriotad  7314  axrepndlem1  10483  axrepndlem2  10484  axunndlem1  10486  axunnd  10487  axregndlem2  10494  axinfndlem1  10496  axinfnd  10497  axacndlem4  10501  axacndlem5  10502  axacnd  10503  nfchnd  18517  axsepg2  35092  axsepg2ALT  35093  bj-gabima  36980  cbvreud  37413  riotasv2d  39002
  Copyright terms: Public domain W3C validator