| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfand | Structured version Visualization version GIF version | ||
| Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓 ∧ 𝜒). (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfand.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| nfand.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| Ref | Expression |
|---|---|
| nfand | ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-an 396 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ ¬ (𝜓 → ¬ 𝜒)) | |
| 2 | nfand.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 3 | nfand.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 4 | 3 | nfnd 1857 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜒) |
| 5 | 2, 4 | nfimd 1893 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → ¬ 𝜒)) |
| 6 | 5 | nfnd 1857 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ (𝜓 → ¬ 𝜒)) |
| 7 | 1, 6 | nfxfrd 1853 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 Ⅎwnf 1782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: nf3and 1897 nfan 1898 nfbid 1901 nfeud2 2588 nfeudw 2589 nfeld 2909 nfreuwOLD 3409 nfrmowOLD 3410 nfrmod 3415 nfreud 3416 nfrmo 3417 nfrabwOLD 3459 nfrab 3461 nfifd 4535 nfdisjw 5102 nfdisj 5103 nfopabd 5191 dfid3 5561 nfriotadw 7378 nfriotad 7381 axrepndlem1 10614 axrepndlem2 10615 axunndlem1 10617 axunnd 10618 axregndlem2 10625 axinfndlem1 10627 axinfnd 10628 axacndlem4 10632 axacndlem5 10633 axacnd 10634 axsepg2 35071 axsepg2ALT 35072 bj-gabima 36916 cbvreud 37349 riotasv2d 38933 |
| Copyright terms: Public domain | W3C validator |