| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfand | Structured version Visualization version GIF version | ||
| Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓 ∧ 𝜒). (Contributed by Mario Carneiro, 7-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfand.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| nfand.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| Ref | Expression |
|---|---|
| nfand | ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-an 396 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ ¬ (𝜓 → ¬ 𝜒)) | |
| 2 | nfand.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 3 | nfand.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 4 | 3 | nfnd 1859 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜒) |
| 5 | 2, 4 | nfimd 1895 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → ¬ 𝜒)) |
| 6 | 5 | nfnd 1859 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ (𝜓 → ¬ 𝜒)) |
| 7 | 1, 6 | nfxfrd 1855 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: nf3and 1899 nfan 1900 nfbid 1903 nfeud2 2587 nfeudw 2588 nfeld 2907 nfrmod 3392 nfreud 3393 nfrmo 3394 nfrab 3435 nfifd 4504 nfdisjw 5072 nfdisj 5073 nfopabd 5161 dfid3 5517 nfriotadw 7317 nfriotad 7320 axrepndlem1 10490 axrepndlem2 10491 axunndlem1 10493 axunnd 10494 axregndlem2 10501 axinfndlem1 10503 axinfnd 10504 axacndlem4 10508 axacndlem5 10509 axacnd 10510 nfchnd 18519 axsepg2 35115 axsepg2ALT 35116 bj-gabima 37005 cbvreud 37438 riotasv2d 39077 |
| Copyright terms: Public domain | W3C validator |