![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfand | Structured version Visualization version GIF version |
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓 ∧ 𝜒). (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfand.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
nfand.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
Ref | Expression |
---|---|
nfand | ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-an 396 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ ¬ (𝜓 → ¬ 𝜒)) | |
2 | nfand.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
3 | nfand.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
4 | 3 | nfnd 1854 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜒) |
5 | 2, 4 | nfimd 1890 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → ¬ 𝜒)) |
6 | 5 | nfnd 1854 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ (𝜓 → ¬ 𝜒)) |
7 | 1, 6 | nfxfrd 1849 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 Ⅎwnf 1778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-ex 1775 df-nf 1779 |
This theorem is referenced by: nf3and 1894 nfan 1895 nfbid 1898 nfeud2 2580 nfeudw 2581 nfeld 2910 nfreuwOLD 3418 nfrmowOLD 3419 nfrmod 3424 nfreud 3425 nfrmo 3426 nfrabwOLD 3465 nfrab 3468 nfifd 4553 nfdisjw 5119 nfdisj 5120 nfopabd 5210 dfid3 5573 nfriotadw 7378 nfriotad 7382 axrepndlem1 10609 axrepndlem2 10610 axunndlem1 10612 axunnd 10613 axregndlem2 10620 axinfndlem1 10622 axinfnd 10623 axacndlem4 10627 axacndlem5 10628 axacnd 10629 bj-gabima 36412 cbvreud 36846 riotasv2d 38423 |
Copyright terms: Public domain | W3C validator |