MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfand Structured version   Visualization version   GIF version

Theorem nfand 1893
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓𝜒). (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfand.1 (𝜑 → Ⅎ𝑥𝜓)
nfand.2 (𝜑 → Ⅎ𝑥𝜒)
Assertion
Ref Expression
nfand (𝜑 → Ⅎ𝑥(𝜓𝜒))

Proof of Theorem nfand
StepHypRef Expression
1 df-an 396 . 2 ((𝜓𝜒) ↔ ¬ (𝜓 → ¬ 𝜒))
2 nfand.1 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
3 nfand.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜒)
43nfnd 1854 . . . 4 (𝜑 → Ⅎ𝑥 ¬ 𝜒)
52, 4nfimd 1890 . . 3 (𝜑 → Ⅎ𝑥(𝜓 → ¬ 𝜒))
65nfnd 1854 . 2 (𝜑 → Ⅎ𝑥 ¬ (𝜓 → ¬ 𝜒))
71, 6nfxfrd 1849 1 (𝜑 → Ⅎ𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wnf 1778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-ex 1775  df-nf 1779
This theorem is referenced by:  nf3and  1894  nfan  1895  nfbid  1898  nfeud2  2580  nfeudw  2581  nfeld  2910  nfreuwOLD  3418  nfrmowOLD  3419  nfrmod  3424  nfreud  3425  nfrmo  3426  nfrabwOLD  3465  nfrab  3468  nfifd  4553  nfdisjw  5119  nfdisj  5120  nfopabd  5210  dfid3  5573  nfriotadw  7378  nfriotad  7382  axrepndlem1  10609  axrepndlem2  10610  axunndlem1  10612  axunnd  10613  axregndlem2  10620  axinfndlem1  10622  axinfnd  10623  axacndlem4  10627  axacndlem5  10628  axacnd  10629  bj-gabima  36412  cbvreud  36846  riotasv2d  38423
  Copyright terms: Public domain W3C validator