MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfand Structured version   Visualization version   GIF version

Theorem nfand 1896
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓𝜒). (Contributed by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfand.1 (𝜑 → Ⅎ𝑥𝜓)
nfand.2 (𝜑 → Ⅎ𝑥𝜒)
Assertion
Ref Expression
nfand (𝜑 → Ⅎ𝑥(𝜓𝜒))

Proof of Theorem nfand
StepHypRef Expression
1 df-an 396 . 2 ((𝜓𝜒) ↔ ¬ (𝜓 → ¬ 𝜒))
2 nfand.1 . . . 4 (𝜑 → Ⅎ𝑥𝜓)
3 nfand.2 . . . . 5 (𝜑 → Ⅎ𝑥𝜒)
43nfnd 1857 . . . 4 (𝜑 → Ⅎ𝑥 ¬ 𝜒)
52, 4nfimd 1893 . . 3 (𝜑 → Ⅎ𝑥(𝜓 → ¬ 𝜒))
65nfnd 1857 . 2 (𝜑 → Ⅎ𝑥 ¬ (𝜓 → ¬ 𝜒))
71, 6nfxfrd 1852 1 (𝜑 → Ⅎ𝑥(𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782
This theorem is referenced by:  nf3and  1897  nfan  1898  nfbid  1901  nfeud2  2593  nfeudw  2594  nfeld  2920  nfreuwOLD  3433  nfrmowOLD  3434  nfrmod  3439  nfreud  3440  nfrmo  3441  nfrabwOLD  3484  nfrab  3486  nfifd  4577  nfdisjw  5145  nfdisj  5146  nfopabd  5234  dfid3  5596  nfriotadw  7412  nfriotad  7416  axrepndlem1  10661  axrepndlem2  10662  axunndlem1  10664  axunnd  10665  axregndlem2  10672  axinfndlem1  10674  axinfnd  10675  axacndlem4  10679  axacndlem5  10680  axacnd  10681  axsepg2  35058  axsepg2ALT  35059  bj-gabima  36906  cbvreud  37339  riotasv2d  38913
  Copyright terms: Public domain W3C validator