Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfand | Structured version Visualization version GIF version |
Description: If in a context 𝑥 is not free in 𝜓 and 𝜒, then it is not free in (𝜓 ∧ 𝜒). (Contributed by Mario Carneiro, 7-Oct-2016.) |
Ref | Expression |
---|---|
nfand.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
nfand.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
Ref | Expression |
---|---|
nfand | ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-an 397 | . 2 ⊢ ((𝜓 ∧ 𝜒) ↔ ¬ (𝜓 → ¬ 𝜒)) | |
2 | nfand.1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
3 | nfand.2 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
4 | 3 | nfnd 1865 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜒) |
5 | 2, 4 | nfimd 1901 | . . 3 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → ¬ 𝜒)) |
6 | 5 | nfnd 1865 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ (𝜓 → ¬ 𝜒)) |
7 | 1, 6 | nfxfrd 1860 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 ∧ 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 Ⅎwnf 1790 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1787 df-nf 1791 |
This theorem is referenced by: nf3and 1905 nfan 1906 nfbid 1909 nfeud2 2592 nfeudw 2593 nfeld 2920 nfreud 3301 nfrmod 3302 nfreuwOLD 3305 nfrmowOLD 3306 nfrmo 3308 nfrabwOLD 3318 nfrab 3319 nfifd 4494 nfdisjw 5056 nfdisj 5057 nfopabd 5147 dfid3 5493 nfriotadw 7236 nfriotad 7240 axrepndlem1 10349 axrepndlem2 10350 axunndlem1 10352 axunnd 10353 axregndlem2 10360 axinfndlem1 10362 axinfnd 10363 axacndlem4 10367 axacndlem5 10368 axacnd 10369 bj-gabima 35124 cbvreud 35540 riotasv2d 36967 |
Copyright terms: Public domain | W3C validator |