| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf3an | Structured version Visualization version GIF version | ||
| Description: If 𝑥 is not free in 𝜑, 𝜓, and 𝜒, then it is not free in (𝜑 ∧ 𝜓 ∧ 𝜒). (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfan.1 | ⊢ Ⅎ𝑥𝜑 |
| nfan.2 | ⊢ Ⅎ𝑥𝜓 |
| nfan.3 | ⊢ Ⅎ𝑥𝜒 |
| Ref | Expression |
|---|---|
| nf3an | ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓 ∧ 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1088 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 2 | nfan.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | nfan.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 4 | 2, 3 | nfan 1898 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓) |
| 5 | nfan.3 | . . 3 ⊢ Ⅎ𝑥𝜒 | |
| 6 | 4, 5 | nfan 1898 | . 2 ⊢ Ⅎ𝑥((𝜑 ∧ 𝜓) ∧ 𝜒) |
| 7 | 1, 6 | nfxfr 1852 | 1 ⊢ Ⅎ𝑥(𝜑 ∧ 𝜓 ∧ 𝜒) |
| Copyright terms: Public domain | W3C validator |