| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfxfrd | Structured version Visualization version GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| nfxfrd.2 | ⊢ (𝜒 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfxfrd | ⊢ (𝜒 → Ⅎ𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfxfrd.2 | . 2 ⊢ (𝜒 → Ⅎ𝑥𝜓) | |
| 2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | nfbii 1852 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| 4 | 1, 3 | sylibr 234 | 1 ⊢ (𝜒 → Ⅎ𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfand 1897 nf3and 1898 nfbid 1902 nfexd 2329 dvelimhw 2346 nfexd2 2450 dvelimf 2452 nfmod2 2557 nfmodv 2558 nfeud2 2589 nfeudw 2590 nfeqd 2909 nfeld 2910 nfabdw 2920 nfabd 2921 nfned 3034 nfneld 3045 nfraldw 3289 nfrexdw 3290 nfrald 3351 nfrexd 3352 nfreuwOLD 3405 nfrmod 3411 nfreud 3412 nfsbc1d 3783 nfsbcdw 3786 nfsbcd 3789 nfbrd 5165 bj-dvelimdv 36815 bj-nfexd 37102 wl-sb8eut 37542 wl-sb8eutv 37543 |
| Copyright terms: Public domain | W3C validator |