![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfxfrd | Structured version Visualization version GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
nfxfrd.2 | ⊢ (𝜒 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfxfrd | ⊢ (𝜒 → Ⅎ𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxfrd.2 | . 2 ⊢ (𝜒 → Ⅎ𝑥𝜓) | |
2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | nfbii 1850 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
4 | 1, 3 | sylibr 234 | 1 ⊢ (𝜒 → Ⅎ𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1781 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-ex 1778 df-nf 1782 |
This theorem is referenced by: nfand 1896 nf3and 1897 nfbid 1901 nfexd 2333 dvelimhw 2351 nfexd2 2454 dvelimf 2456 nfmod2 2561 nfmodv 2562 nfeud2 2593 nfeudw 2594 nfeqd 2919 nfeld 2920 nfabdw 2932 nfabdwOLD 2933 nfabd 2934 nfned 3050 nfneld 3061 nfraldw 3315 nfrexdw 3316 nfraldwOLD 3328 nfrald 3380 nfrexd 3381 nfreuwOLD 3433 nfrmod 3439 nfreud 3440 nfsbc1d 3822 nfsbcdw 3825 nfsbcd 3828 nfbrd 5212 bj-dvelimdv 36817 bj-nfexd 37104 wl-sb8eut 37532 wl-sb8eutv 37533 |
Copyright terms: Public domain | W3C validator |