![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfxfrd | Structured version Visualization version GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
nfxfrd.2 | ⊢ (𝜒 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfxfrd | ⊢ (𝜒 → Ⅎ𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxfrd.2 | . 2 ⊢ (𝜒 → Ⅎ𝑥𝜓) | |
2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | nfbii 1846 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
4 | 1, 3 | sylibr 233 | 1 ⊢ (𝜒 → Ⅎ𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 |
This theorem depends on definitions: df-bi 206 df-ex 1774 df-nf 1778 |
This theorem is referenced by: nfand 1892 nf3and 1893 nfbid 1897 nfexd 2317 dvelimhw 2336 nfexd2 2440 dvelimf 2442 nfmod2 2547 nfmodv 2548 nfeud2 2579 nfeudw 2580 nfeqd 2910 nfeld 2911 nfabdw 2923 nfabdwOLD 2924 nfabd 2925 nfned 3041 nfneld 3052 nfraldw 3304 nfrexdw 3305 nfraldwOLD 3316 nfrald 3366 nfrexd 3367 nfreuwOLD 3420 nfrmod 3426 nfreud 3427 nfsbc1d 3796 nfsbcdw 3799 nfsbcd 3802 nfbrd 5198 bj-dvelimdv 36361 bj-nfexd 36650 wl-sb8eut 37078 wl-sb8eutv 37079 |
Copyright terms: Public domain | W3C validator |