Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfxfrd | Structured version Visualization version GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
nfxfrd.2 | ⊢ (𝜒 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfxfrd | ⊢ (𝜒 → Ⅎ𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxfrd.2 | . 2 ⊢ (𝜒 → Ⅎ𝑥𝜓) | |
2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | nfbii 1855 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
4 | 1, 3 | sylibr 233 | 1 ⊢ (𝜒 → Ⅎ𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: nfand 1901 nf3and 1902 nfbid 1906 nfexd 2327 dvelimhw 2345 nfexd2 2446 dvelimf 2448 nfmod2 2558 nfmodv 2559 nfeud2 2590 nfeudw 2591 nfeqd 2916 nfeld 2917 nfabdw 2929 nfabdwOLD 2930 nfabd 2931 nfned 3045 nfneld 3056 nfraldw 3146 nfraldwOLD 3147 nfrald 3148 nfrexd 3235 nfrexdg 3236 nfreud 3298 nfrmod 3299 nfreuw 3300 nfsbc1d 3729 nfsbcdw 3732 nfsbcd 3735 nfbrd 5116 bj-dvelimdv 34962 bj-nfexd 35236 wl-sb8eut 35659 |
Copyright terms: Public domain | W3C validator |