| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfxfrd | Structured version Visualization version GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| nfxfrd.2 | ⊢ (𝜒 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfxfrd | ⊢ (𝜒 → Ⅎ𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfxfrd.2 | . 2 ⊢ (𝜒 → Ⅎ𝑥𝜓) | |
| 2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | nfbii 1853 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| 4 | 1, 3 | sylibr 234 | 1 ⊢ (𝜒 → Ⅎ𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: nfand 1898 nf3and 1899 nfbid 1903 nfexd 2332 dvelimhw 2347 nfexd2 2448 dvelimf 2450 nfmod2 2555 nfmodv 2556 nfeud2 2587 nfeudw 2588 nfeqd 2906 nfeld 2907 nfabdw 2917 nfabd 2918 nfned 3031 nfneld 3042 nfraldw 3278 nfrexdw 3279 nfrald 3339 nfrexd 3340 nfrmod 3392 nfreud 3393 nfsbc1d 3755 nfsbcdw 3758 nfsbcd 3761 nfbrd 5139 nfchnd 18519 bj-dvelimdv 36916 bj-nfexd 37203 wl-sb8eut 37643 wl-sb8eutv 37644 |
| Copyright terms: Public domain | W3C validator |