| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfxfrd | Structured version Visualization version GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| nfxfrd.2 | ⊢ (𝜒 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfxfrd | ⊢ (𝜒 → Ⅎ𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfxfrd.2 | . 2 ⊢ (𝜒 → Ⅎ𝑥𝜓) | |
| 2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | nfbii 1852 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| 4 | 1, 3 | sylibr 234 | 1 ⊢ (𝜒 → Ⅎ𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfand 1897 nf3and 1898 nfbid 1902 nfexd 2328 dvelimhw 2343 nfexd2 2445 dvelimf 2447 nfmod2 2552 nfmodv 2553 nfeud2 2584 nfeudw 2585 nfeqd 2903 nfeld 2904 nfabdw 2914 nfabd 2915 nfned 3028 nfneld 3039 nfraldw 3285 nfrexdw 3286 nfrald 3348 nfrexd 3349 nfrmod 3404 nfreud 3405 nfsbc1d 3774 nfsbcdw 3777 nfsbcd 3780 nfbrd 5156 bj-dvelimdv 36846 bj-nfexd 37133 wl-sb8eut 37573 wl-sb8eutv 37574 |
| Copyright terms: Public domain | W3C validator |