MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfxfrd Structured version   Visualization version   GIF version

Theorem nfxfrd 1850
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nfbii.1 (𝜑𝜓)
nfxfrd.2 (𝜒 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfxfrd (𝜒 → Ⅎ𝑥𝜑)

Proof of Theorem nfxfrd
StepHypRef Expression
1 nfxfrd.2 . 2 (𝜒 → Ⅎ𝑥𝜓)
2 nfbii.1 . . 3 (𝜑𝜓)
32nfbii 1848 . 2 (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)
41, 3sylibr 234 1 (𝜒 → Ⅎ𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wnf 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805
This theorem depends on definitions:  df-bi 207  df-ex 1776  df-nf 1780
This theorem is referenced by:  nfand  1894  nf3and  1895  nfbid  1899  nfexd  2327  dvelimhw  2345  nfexd2  2448  dvelimf  2450  nfmod2  2555  nfmodv  2556  nfeud2  2587  nfeudw  2588  nfeqd  2913  nfeld  2914  nfabdw  2924  nfabd  2925  nfned  3041  nfneld  3052  nfraldw  3306  nfrexdw  3307  nfrald  3369  nfrexd  3370  nfreuwOLD  3422  nfrmod  3428  nfreud  3429  nfsbc1d  3808  nfsbcdw  3811  nfsbcd  3814  nfbrd  5193  bj-dvelimdv  36833  bj-nfexd  37120  wl-sb8eut  37558  wl-sb8eutv  37559
  Copyright terms: Public domain W3C validator