MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfxfrd Structured version   Visualization version   GIF version

Theorem nfxfrd 1857
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nfbii.1 (𝜑𝜓)
nfxfrd.2 (𝜒 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfxfrd (𝜒 → Ⅎ𝑥𝜑)

Proof of Theorem nfxfrd
StepHypRef Expression
1 nfxfrd.2 . 2 (𝜒 → Ⅎ𝑥𝜓)
2 nfbii.1 . . 3 (𝜑𝜓)
32nfbii 1855 . 2 (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)
41, 3sylibr 233 1 (𝜒 → Ⅎ𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-ex 1784  df-nf 1788
This theorem is referenced by:  nfand  1901  nf3and  1902  nfbid  1906  nfexd  2327  dvelimhw  2345  nfexd2  2446  dvelimf  2448  nfmod2  2558  nfmodv  2559  nfeud2  2590  nfeudw  2591  nfeqd  2916  nfeld  2917  nfabdw  2929  nfabdwOLD  2930  nfabd  2931  nfned  3045  nfneld  3056  nfraldw  3146  nfraldwOLD  3147  nfrald  3148  nfrexd  3235  nfrexdg  3236  nfreud  3298  nfrmod  3299  nfreuw  3300  nfsbc1d  3729  nfsbcdw  3732  nfsbcd  3735  nfbrd  5116  bj-dvelimdv  34962  bj-nfexd  35236  wl-sb8eut  35659
  Copyright terms: Public domain W3C validator