![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfxfrd | Structured version Visualization version GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
nfxfrd.2 | ⊢ (𝜒 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfxfrd | ⊢ (𝜒 → Ⅎ𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfxfrd.2 | . 2 ⊢ (𝜒 → Ⅎ𝑥𝜓) | |
2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | nfbii 1848 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
4 | 1, 3 | sylibr 234 | 1 ⊢ (𝜒 → Ⅎ𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 |
This theorem depends on definitions: df-bi 207 df-ex 1776 df-nf 1780 |
This theorem is referenced by: nfand 1894 nf3and 1895 nfbid 1899 nfexd 2327 dvelimhw 2345 nfexd2 2448 dvelimf 2450 nfmod2 2555 nfmodv 2556 nfeud2 2587 nfeudw 2588 nfeqd 2913 nfeld 2914 nfabdw 2924 nfabd 2925 nfned 3041 nfneld 3052 nfraldw 3306 nfrexdw 3307 nfrald 3369 nfrexd 3370 nfreuwOLD 3422 nfrmod 3428 nfreud 3429 nfsbc1d 3808 nfsbcdw 3811 nfsbcd 3814 nfbrd 5193 bj-dvelimdv 36833 bj-nfexd 37120 wl-sb8eut 37558 wl-sb8eutv 37559 |
Copyright terms: Public domain | W3C validator |