| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfxfrd | Structured version Visualization version GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| nfxfrd.2 | ⊢ (𝜒 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfxfrd | ⊢ (𝜒 → Ⅎ𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfxfrd.2 | . 2 ⊢ (𝜒 → Ⅎ𝑥𝜓) | |
| 2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | nfbii 1852 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| 4 | 1, 3 | sylibr 234 | 1 ⊢ (𝜒 → Ⅎ𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 |
| This theorem is referenced by: nfand 1897 nf3and 1898 nfbid 1902 nfexd 2328 dvelimhw 2343 nfexd2 2444 dvelimf 2446 nfmod2 2551 nfmodv 2552 nfeud2 2583 nfeudw 2584 nfeqd 2902 nfeld 2903 nfabdw 2913 nfabd 2914 nfned 3027 nfneld 3038 nfraldw 3275 nfrexdw 3276 nfrald 3337 nfrexd 3338 nfrmod 3392 nfreud 3393 nfsbc1d 3762 nfsbcdw 3765 nfsbcd 3768 nfbrd 5141 bj-dvelimdv 36824 bj-nfexd 37111 wl-sb8eut 37551 wl-sb8eutv 37552 |
| Copyright terms: Public domain | W3C validator |