| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfxfrd | Structured version Visualization version GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nfbii.1 | ⊢ (𝜑 ↔ 𝜓) |
| nfxfrd.2 | ⊢ (𝜒 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfxfrd | ⊢ (𝜒 → Ⅎ𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfxfrd.2 | . 2 ⊢ (𝜒 → Ⅎ𝑥𝜓) | |
| 2 | nfbii.1 | . . 3 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | nfbii 1853 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓) |
| 4 | 1, 3 | sylibr 234 | 1 ⊢ (𝜒 → Ⅎ𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1784 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-ex 1781 df-nf 1785 |
| This theorem is referenced by: nfand 1898 nf3and 1899 nfbid 1903 nfexd 2330 dvelimhw 2345 nfexd2 2446 dvelimf 2448 nfmod2 2553 nfmodv 2554 nfeud2 2585 nfeudw 2586 nfeqd 2905 nfeld 2906 nfabdw 2916 nfabd 2917 nfned 3030 nfneld 3041 nfraldw 3277 nfrexdw 3278 nfrald 3338 nfrexd 3339 nfrmod 3391 nfreud 3392 nfsbc1d 3759 nfsbcdw 3762 nfsbcd 3765 nfbrd 5137 nfchnd 18514 bj-dvelimdv 36884 bj-nfexd 37171 wl-sb8eut 37611 wl-sb8eutv 37612 |
| Copyright terms: Public domain | W3C validator |