MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfxfrd Structured version   Visualization version   GIF version

Theorem nfxfrd 1852
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nfbii.1 (𝜑𝜓)
nfxfrd.2 (𝜒 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfxfrd (𝜒 → Ⅎ𝑥𝜑)

Proof of Theorem nfxfrd
StepHypRef Expression
1 nfxfrd.2 . 2 (𝜒 → Ⅎ𝑥𝜓)
2 nfbii.1 . . 3 (𝜑𝜓)
32nfbii 1850 . 2 (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥𝜓)
41, 3sylibr 234 1 (𝜒 → Ⅎ𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wnf 1781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-ex 1778  df-nf 1782
This theorem is referenced by:  nfand  1896  nf3and  1897  nfbid  1901  nfexd  2333  dvelimhw  2351  nfexd2  2454  dvelimf  2456  nfmod2  2561  nfmodv  2562  nfeud2  2593  nfeudw  2594  nfeqd  2919  nfeld  2920  nfabdw  2932  nfabdwOLD  2933  nfabd  2934  nfned  3050  nfneld  3061  nfraldw  3315  nfrexdw  3316  nfraldwOLD  3328  nfrald  3380  nfrexd  3381  nfreuwOLD  3433  nfrmod  3439  nfreud  3440  nfsbc1d  3822  nfsbcdw  3825  nfsbcd  3828  nfbrd  5212  bj-dvelimdv  36817  bj-nfexd  37104  wl-sb8eut  37532  wl-sb8eutv  37533
  Copyright terms: Public domain W3C validator