MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf5d Structured version   Visualization version   GIF version

Theorem nf5d 2284
Description: Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.)
Hypotheses
Ref Expression
nf5d.1 𝑥𝜑
nf5d.2 (𝜑 → (𝜓 → ∀𝑥𝜓))
Assertion
Ref Expression
nf5d (𝜑 → Ⅎ𝑥𝜓)

Proof of Theorem nf5d
StepHypRef Expression
1 nf5d.1 . . 3 𝑥𝜑
2 nf5d.2 . . 3 (𝜑 → (𝜓 → ∀𝑥𝜓))
31, 2alrimi 2209 . 2 (𝜑 → ∀𝑥(𝜓 → ∀𝑥𝜓))
4 nf5-1 2143 . 2 (∀𝑥(𝜓 → ∀𝑥𝜓) → Ⅎ𝑥𝜓)
53, 4syl 17 1 (𝜑 → Ⅎ𝑥𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537  wnf 1787
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-ex 1784  df-nf 1788
This theorem is referenced by:  dvelimhw  2345  nfeqf  2381  cbv1h  2405  axc16nfALT  2437  nfsb2  2487  nfabdwOLD  2930  distel  33685  bj-cbv1hv  34905  wl-ax11-lem3  35665  ichnfimlem  44803
  Copyright terms: Public domain W3C validator