Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nf5d | Structured version Visualization version GIF version |
Description: Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nf5d.1 | ⊢ Ⅎ𝑥𝜑 |
nf5d.2 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Ref | Expression |
---|---|
nf5d | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5d.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | nf5d.2 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
3 | 1, 2 | alrimi 2209 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → ∀𝑥𝜓)) |
4 | nf5-1 2143 | . 2 ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → Ⅎ𝑥𝜓) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2139 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-ex 1784 df-nf 1788 |
This theorem is referenced by: dvelimhw 2345 nfeqf 2381 cbv1h 2405 axc16nfALT 2437 nfsb2 2487 nfabdwOLD 2930 distel 33685 bj-cbv1hv 34905 wl-ax11-lem3 35665 ichnfimlem 44803 |
Copyright terms: Public domain | W3C validator |