![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nf5d | Structured version Visualization version GIF version |
Description: Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.) |
Ref | Expression |
---|---|
nf5d.1 | ⊢ Ⅎ𝑥𝜑 |
nf5d.2 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
Ref | Expression |
---|---|
nf5d | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nf5d.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | nf5d.2 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
3 | 1, 2 | alrimi 2207 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → ∀𝑥𝜓)) |
4 | nf5-1 2142 | . 2 ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → Ⅎ𝑥𝜓) | |
5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 Ⅎwnf 1786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-10 2138 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-ex 1783 df-nf 1787 |
This theorem is referenced by: dvelimhw 2342 nfeqf 2380 cbv1h 2404 axc16nfALT 2436 nfsb2 2486 nfabdwOLD 2932 distel 34417 bj-cbv1hv 35290 wl-ax11-lem3 36068 ichnfimlem 45729 |
Copyright terms: Public domain | W3C validator |