| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf5d | Structured version Visualization version GIF version | ||
| Description: Deduce that 𝑥 is not free in 𝜓 in a context. (Contributed by Mario Carneiro, 24-Sep-2016.) |
| Ref | Expression |
|---|---|
| nf5d.1 | ⊢ Ⅎ𝑥𝜑 |
| nf5d.2 | ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) |
| Ref | Expression |
|---|---|
| nf5d | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf5d.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nf5d.2 | . . 3 ⊢ (𝜑 → (𝜓 → ∀𝑥𝜓)) | |
| 3 | 1, 2 | alrimi 2212 | . 2 ⊢ (𝜑 → ∀𝑥(𝜓 → ∀𝑥𝜓)) |
| 4 | nf5-1 2144 | . 2 ⊢ (∀𝑥(𝜓 → ∀𝑥𝜓) → Ⅎ𝑥𝜓) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1537 Ⅎwnf 1782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-10 2140 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-ex 1779 df-nf 1783 |
| This theorem is referenced by: dvelimhw 2346 nfeqf 2385 cbv1h 2409 axc16nfALT 2441 nfsb2 2487 distel 35805 bj-cbv1hv 36798 wl-ax11-lem3 37589 ichnfimlem 47455 |
| Copyright terms: Public domain | W3C validator |