MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusv2nf Structured version   Visualization version   GIF version

Theorem eusv2nf 5296
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by Mario Carneiro, 18-Nov-2016.)
Hypothesis
Ref Expression
eusv2.1 𝐴 ∈ V
Assertion
Ref Expression
eusv2nf (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem eusv2nf
StepHypRef Expression
1 nfeu1 2674 . . . 4 𝑦∃!𝑦𝑥 𝑦 = 𝐴
2 nfe1 2154 . . . . . . 7 𝑥𝑥 𝑦 = 𝐴
32nfeuw 2679 . . . . . 6 𝑥∃!𝑦𝑥 𝑦 = 𝐴
4 eusv2.1 . . . . . . . . 9 𝐴 ∈ V
54isseti 3508 . . . . . . . 8 𝑦 𝑦 = 𝐴
6 19.8a 2180 . . . . . . . . 9 (𝑦 = 𝐴 → ∃𝑥 𝑦 = 𝐴)
76ancri 552 . . . . . . . 8 (𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴𝑦 = 𝐴))
85, 7eximii 1837 . . . . . . 7 𝑦(∃𝑥 𝑦 = 𝐴𝑦 = 𝐴)
9 eupick 2718 . . . . . . 7 ((∃!𝑦𝑥 𝑦 = 𝐴 ∧ ∃𝑦(∃𝑥 𝑦 = 𝐴𝑦 = 𝐴)) → (∃𝑥 𝑦 = 𝐴𝑦 = 𝐴))
108, 9mpan2 689 . . . . . 6 (∃!𝑦𝑥 𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴𝑦 = 𝐴))
113, 10alrimi 2213 . . . . 5 (∃!𝑦𝑥 𝑦 = 𝐴 → ∀𝑥(∃𝑥 𝑦 = 𝐴𝑦 = 𝐴))
12 nf6 2291 . . . . 5 (Ⅎ𝑥 𝑦 = 𝐴 ↔ ∀𝑥(∃𝑥 𝑦 = 𝐴𝑦 = 𝐴))
1311, 12sylibr 236 . . . 4 (∃!𝑦𝑥 𝑦 = 𝐴 → Ⅎ𝑥 𝑦 = 𝐴)
141, 13alrimi 2213 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴 → ∀𝑦𝑥 𝑦 = 𝐴)
15 dfnfc2 4860 . . . 4 (∀𝑥 𝐴 ∈ V → (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦 = 𝐴))
1615, 4mpg 1798 . . 3 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦 = 𝐴)
1714, 16sylibr 236 . 2 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
18 eusvnfb 5294 . . . 4 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ (𝑥𝐴𝐴 ∈ V))
194, 18mpbiran2 708 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
20 eusv2i 5295 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴 → ∃!𝑦𝑥 𝑦 = 𝐴)
2119, 20sylbir 237 . 2 (𝑥𝐴 → ∃!𝑦𝑥 𝑦 = 𝐴)
2217, 21impbii 211 1 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wal 1535   = wceq 1537  wex 1780  wnf 1784  wcel 2114  ∃!weu 2653  wnfc 2961  Vcvv 3494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-sn 4568  df-pr 4570  df-uni 4839
This theorem is referenced by:  eusv2  5297
  Copyright terms: Public domain W3C validator