MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eusv2nf Structured version   Visualization version   GIF version

Theorem eusv2nf 5313
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by Mario Carneiro, 18-Nov-2016.)
Hypothesis
Ref Expression
eusv2.1 𝐴 ∈ V
Assertion
Ref Expression
eusv2nf (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem eusv2nf
StepHypRef Expression
1 nfeu1 2588 . . . 4 𝑦∃!𝑦𝑥 𝑦 = 𝐴
2 nfe1 2149 . . . . . . 7 𝑥𝑥 𝑦 = 𝐴
32nfeuw 2593 . . . . . 6 𝑥∃!𝑦𝑥 𝑦 = 𝐴
4 eusv2.1 . . . . . . . . 9 𝐴 ∈ V
54isseti 3437 . . . . . . . 8 𝑦 𝑦 = 𝐴
6 19.8a 2176 . . . . . . . . 9 (𝑦 = 𝐴 → ∃𝑥 𝑦 = 𝐴)
76ancri 549 . . . . . . . 8 (𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴𝑦 = 𝐴))
85, 7eximii 1840 . . . . . . 7 𝑦(∃𝑥 𝑦 = 𝐴𝑦 = 𝐴)
9 eupick 2635 . . . . . . 7 ((∃!𝑦𝑥 𝑦 = 𝐴 ∧ ∃𝑦(∃𝑥 𝑦 = 𝐴𝑦 = 𝐴)) → (∃𝑥 𝑦 = 𝐴𝑦 = 𝐴))
108, 9mpan2 687 . . . . . 6 (∃!𝑦𝑥 𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴𝑦 = 𝐴))
113, 10alrimi 2209 . . . . 5 (∃!𝑦𝑥 𝑦 = 𝐴 → ∀𝑥(∃𝑥 𝑦 = 𝐴𝑦 = 𝐴))
12 nf6 2283 . . . . 5 (Ⅎ𝑥 𝑦 = 𝐴 ↔ ∀𝑥(∃𝑥 𝑦 = 𝐴𝑦 = 𝐴))
1311, 12sylibr 233 . . . 4 (∃!𝑦𝑥 𝑦 = 𝐴 → Ⅎ𝑥 𝑦 = 𝐴)
141, 13alrimi 2209 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴 → ∀𝑦𝑥 𝑦 = 𝐴)
15 dfnfc2 4860 . . . 4 (∀𝑥 𝐴 ∈ V → (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦 = 𝐴))
1615, 4mpg 1801 . . 3 (𝑥𝐴 ↔ ∀𝑦𝑥 𝑦 = 𝐴)
1714, 16sylibr 233 . 2 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
18 eusvnfb 5311 . . . 4 (∃!𝑦𝑥 𝑦 = 𝐴 ↔ (𝑥𝐴𝐴 ∈ V))
194, 18mpbiran2 706 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
20 eusv2i 5312 . . 3 (∃!𝑦𝑥 𝑦 = 𝐴 → ∃!𝑦𝑥 𝑦 = 𝐴)
2119, 20sylbir 234 . 2 (𝑥𝐴 → ∃!𝑦𝑥 𝑦 = 𝐴)
2217, 21impbii 208 1 (∃!𝑦𝑥 𝑦 = 𝐴𝑥𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wex 1783  wnf 1787  wcel 2108  ∃!weu 2568  wnfc 2886  Vcvv 3422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-sn 4559  df-pr 4561  df-uni 4837
This theorem is referenced by:  eusv2  5314
  Copyright terms: Public domain W3C validator