Proof of Theorem eusv2nf
| Step | Hyp | Ref
| Expression |
| 1 | | nfeu1 2588 |
. . . 4
⊢
Ⅎ𝑦∃!𝑦∃𝑥 𝑦 = 𝐴 |
| 2 | | nfe1 2150 |
. . . . . . 7
⊢
Ⅎ𝑥∃𝑥 𝑦 = 𝐴 |
| 3 | 2 | nfeuw 2593 |
. . . . . 6
⊢
Ⅎ𝑥∃!𝑦∃𝑥 𝑦 = 𝐴 |
| 4 | | eusv2.1 |
. . . . . . . . 9
⊢ 𝐴 ∈ V |
| 5 | 4 | isseti 3498 |
. . . . . . . 8
⊢
∃𝑦 𝑦 = 𝐴 |
| 6 | | 19.8a 2181 |
. . . . . . . . 9
⊢ (𝑦 = 𝐴 → ∃𝑥 𝑦 = 𝐴) |
| 7 | 6 | ancri 549 |
. . . . . . . 8
⊢ (𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴 ∧ 𝑦 = 𝐴)) |
| 8 | 5, 7 | eximii 1837 |
. . . . . . 7
⊢
∃𝑦(∃𝑥 𝑦 = 𝐴 ∧ 𝑦 = 𝐴) |
| 9 | | eupick 2633 |
. . . . . . 7
⊢
((∃!𝑦∃𝑥 𝑦 = 𝐴 ∧ ∃𝑦(∃𝑥 𝑦 = 𝐴 ∧ 𝑦 = 𝐴)) → (∃𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴)) |
| 10 | 8, 9 | mpan2 691 |
. . . . . 6
⊢
(∃!𝑦∃𝑥 𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴)) |
| 11 | 3, 10 | alrimi 2213 |
. . . . 5
⊢
(∃!𝑦∃𝑥 𝑦 = 𝐴 → ∀𝑥(∃𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴)) |
| 12 | | nf6 2283 |
. . . . 5
⊢
(Ⅎ𝑥 𝑦 = 𝐴 ↔ ∀𝑥(∃𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴)) |
| 13 | 11, 12 | sylibr 234 |
. . . 4
⊢
(∃!𝑦∃𝑥 𝑦 = 𝐴 → Ⅎ𝑥 𝑦 = 𝐴) |
| 14 | 1, 13 | alrimi 2213 |
. . 3
⊢
(∃!𝑦∃𝑥 𝑦 = 𝐴 → ∀𝑦Ⅎ𝑥 𝑦 = 𝐴) |
| 15 | | dfnfc2 4929 |
. . . 4
⊢
(∀𝑥 𝐴 ∈ V →
(Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴)) |
| 16 | 15, 4 | mpg 1797 |
. . 3
⊢
(Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴) |
| 17 | 14, 16 | sylibr 234 |
. 2
⊢
(∃!𝑦∃𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) |
| 18 | | eusvnfb 5393 |
. . . 4
⊢
(∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) |
| 19 | 4, 18 | mpbiran2 710 |
. . 3
⊢
(∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ Ⅎ𝑥𝐴) |
| 20 | | eusv2i 5394 |
. . 3
⊢
(∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃!𝑦∃𝑥 𝑦 = 𝐴) |
| 21 | 19, 20 | sylbir 235 |
. 2
⊢
(Ⅎ𝑥𝐴 → ∃!𝑦∃𝑥 𝑦 = 𝐴) |
| 22 | 17, 21 | impbii 209 |
1
⊢
(∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ Ⅎ𝑥𝐴) |