Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eusv2nf | Structured version Visualization version GIF version |
Description: Two ways to express single-valuedness of a class expression 𝐴(𝑥). (Contributed by Mario Carneiro, 18-Nov-2016.) |
Ref | Expression |
---|---|
eusv2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
eusv2nf | ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ Ⅎ𝑥𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeu1 2588 | . . . 4 ⊢ Ⅎ𝑦∃!𝑦∃𝑥 𝑦 = 𝐴 | |
2 | nfe1 2147 | . . . . . . 7 ⊢ Ⅎ𝑥∃𝑥 𝑦 = 𝐴 | |
3 | 2 | nfeuw 2593 | . . . . . 6 ⊢ Ⅎ𝑥∃!𝑦∃𝑥 𝑦 = 𝐴 |
4 | eusv2.1 | . . . . . . . . 9 ⊢ 𝐴 ∈ V | |
5 | 4 | isseti 3447 | . . . . . . . 8 ⊢ ∃𝑦 𝑦 = 𝐴 |
6 | 19.8a 2174 | . . . . . . . . 9 ⊢ (𝑦 = 𝐴 → ∃𝑥 𝑦 = 𝐴) | |
7 | 6 | ancri 550 | . . . . . . . 8 ⊢ (𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴 ∧ 𝑦 = 𝐴)) |
8 | 5, 7 | eximii 1839 | . . . . . . 7 ⊢ ∃𝑦(∃𝑥 𝑦 = 𝐴 ∧ 𝑦 = 𝐴) |
9 | eupick 2635 | . . . . . . 7 ⊢ ((∃!𝑦∃𝑥 𝑦 = 𝐴 ∧ ∃𝑦(∃𝑥 𝑦 = 𝐴 ∧ 𝑦 = 𝐴)) → (∃𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴)) | |
10 | 8, 9 | mpan2 688 | . . . . . 6 ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 → (∃𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴)) |
11 | 3, 10 | alrimi 2206 | . . . . 5 ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 → ∀𝑥(∃𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴)) |
12 | nf6 2280 | . . . . 5 ⊢ (Ⅎ𝑥 𝑦 = 𝐴 ↔ ∀𝑥(∃𝑥 𝑦 = 𝐴 → 𝑦 = 𝐴)) | |
13 | 11, 12 | sylibr 233 | . . . 4 ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 → Ⅎ𝑥 𝑦 = 𝐴) |
14 | 1, 13 | alrimi 2206 | . . 3 ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 → ∀𝑦Ⅎ𝑥 𝑦 = 𝐴) |
15 | dfnfc2 4863 | . . . 4 ⊢ (∀𝑥 𝐴 ∈ V → (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴)) | |
16 | 15, 4 | mpg 1800 | . . 3 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 = 𝐴) |
17 | 14, 16 | sylibr 233 | . 2 ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 → Ⅎ𝑥𝐴) |
18 | eusvnfb 5316 | . . . 4 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ (Ⅎ𝑥𝐴 ∧ 𝐴 ∈ V)) | |
19 | 4, 18 | mpbiran2 707 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 ↔ Ⅎ𝑥𝐴) |
20 | eusv2i 5317 | . . 3 ⊢ (∃!𝑦∀𝑥 𝑦 = 𝐴 → ∃!𝑦∃𝑥 𝑦 = 𝐴) | |
21 | 19, 20 | sylbir 234 | . 2 ⊢ (Ⅎ𝑥𝐴 → ∃!𝑦∃𝑥 𝑦 = 𝐴) |
22 | 17, 21 | impbii 208 | 1 ⊢ (∃!𝑦∃𝑥 𝑦 = 𝐴 ↔ Ⅎ𝑥𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 = wceq 1539 ∃wex 1782 Ⅎwnf 1786 ∈ wcel 2106 ∃!weu 2568 Ⅎwnfc 2887 Vcvv 3432 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-sn 4562 df-pr 4564 df-uni 4840 |
This theorem is referenced by: eusv2 5319 |
Copyright terms: Public domain | W3C validator |